Separation property for Schrödinger operators on Riemannian manifolds

Ognjen Milatovic*
Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA

Received 3 June 2005; received in revised form 3 June 2005; accepted 8 July 2005
Available online 10 August 2005

Abstract

We consider a Schrödinger differential expression $L=\Delta_{M}+q$ on a complete Riemannian manifold (M, g) with metric g, where Δ_{M} is the scalar Laplacian on M and $q \geq 0$ is a locally square integrable function on M. In the terminology of Everitt and Giertz, the differential expression L is said to be separated in $L^{2}(M)$ if for all $u \in L^{2}(M)$ such that $L u \in L^{2}(M)$, we have $q u \in L^{2}(M)$. We give sufficient conditions for L to be separated in $L^{2}(M)$. © 2005 Elsevier B.V. All rights reserved.

MSC: 58J50

Keywords: Riemannian manifold; Schrödinger operator; Separation

1. Introduction and the main result

1.1. The setting

Let (M, g) be a Riemannian manifold without boundary (i.e. M is a C^{∞}-manifold without boundary, $\left(g_{j k}\right)$ is a Riemannian metric on $\left.M\right)$ and $\operatorname{dim} M=n$. We will assume that M is connected. We will also assume that we are given a positive smooth measure $\mathrm{d} \mu$, i.e. in any

[^0]local coordinates $x^{1}, x^{2}, \ldots, x^{n}$ there exists a strictly positive C^{∞}-density $\rho(x)$ such that $\mathrm{d} \mu=\rho(x) \mathrm{d} x^{1} \mathrm{~d} x^{2}, \ldots, \mathrm{~d} x^{n}$.

In the sequel, $L^{2}(M)$ is the space of complex-valued square integrable functions on M with the inner product:

$$
\begin{equation*}
(u, v)=\int_{M}(u \bar{v}) \mathrm{d} \mu \tag{1}
\end{equation*}
$$

and $\|\cdot\|$ is the norm in $L^{2}(M)$ corresponding to the inner product (1).
We use the notation $L^{2}\left(\Lambda^{1} T^{*} M\right)$ for the space of complex-valued square integrable 1 -forms on M with the inner product:

$$
\begin{equation*}
(\omega, \psi)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}=\int_{M}\langle\omega, \bar{\psi}\rangle \mathrm{d} \mu \tag{2}
\end{equation*}
$$

where for 1-forms $\omega=\omega_{j} \mathrm{~d} x^{j}$ and $\psi=\psi_{k} \mathrm{~d} x^{k}$, we define

$$
\langle\omega, \psi\rangle:=g^{j k} \omega_{j} \psi_{k}
$$

where $\left(g^{j k}\right)$ is the inverse matrix to $\left(g_{j k}\right)$, and

$$
\bar{\psi}=\bar{\psi}_{k} \mathrm{~d} x^{k}
$$

(Above we used the standard Einstein summation convention.)
The notation $\|\cdot\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}$ stands for the norm in $L^{2}\left(\Lambda^{1} T^{*} M\right)$ corresponding to the inner product (2).

In what follows, by $C^{\infty}(M)$ we denote the space of smooth functions on M, by $C_{c}^{\infty}(M)-$ the space of smooth compactly supported functions on M, by $\Omega^{1}(M)$-the space of smooth 1 -forms on M and by $\Omega_{c}^{1}(M)$-the space of smooth compactly supported 1-forms on M. In the sequel, the operator $d: C^{\infty}(M) \rightarrow \Omega^{1}(M)$ is the standard differential, and

$$
\mathrm{d}^{*}: \Omega^{1}(M) \rightarrow C^{\infty}(M)
$$

is the formal adjoint of d defined by the identity:

$$
(\mathrm{d} u, \omega)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}=\left(u, \mathrm{~d}^{*} \omega\right), \quad u \in C_{c}^{\infty}(M), \quad \omega \in \Omega^{1}(M)
$$

By $\Delta_{M}:=\mathrm{d}^{*} d$ we will denote the scalar Laplacian on M.
We consider a Schrödinger-type differential expression:

$$
\begin{equation*}
L=\Delta_{M}+q, \tag{3}
\end{equation*}
$$

where $q \in L_{\text {loc }}^{2}(M)$ is a real-valued function.

1.2. The set D_{1}

Let L be as in (3). In the sequel, we will use the notation:

$$
\begin{equation*}
D_{1}:=\left\{u \in L^{2}(M): L u \in L^{2}(M)\right\} \tag{4}
\end{equation*}
$$

where $L u$ is understood in the sense of distributions.
Remark 1. In general, it is not true that for all $u \in D_{1}$ we have $\Delta_{M} u \in L^{2}(M)$ and $q u \in$ $L^{2}(M)$ separately.

Using the terminology of Everitt and Giertz [4], we will say that the differential expression $L=\Delta_{M}+q$ is separated in $L^{2}(M)$ when the following statement holds true:

$$
\text { for all } u \in D_{1} \text {, we have } q u \in L^{2}(M)
$$

We will give sufficient conditions for L to be separated in $L^{2}(M)$.
First, we make assumptions on q.
Assumption (A1). Assume that there exists a function $0 \leq V \in C^{1}(M)$ such that

$$
\begin{equation*}
V(x) \leq q(x) \leq c V(x) \tag{5}
\end{equation*}
$$

and

$$
\begin{equation*}
|\mathrm{d} V(x)| \leq \sigma V^{3 / 2}(x), \quad \text { for all } x \in M \tag{6}
\end{equation*}
$$

where $c>0$ and $0 \leq \sigma<2$ are constants.
In (6), the notation $|\mathrm{d} V(x)|$ denotes the norm of $\mathrm{d} V(x) \in T_{x}^{*} M$ with respect to the inner product in $T_{x}^{*} M$ induced by the metric g.

Remark 2. From (5) it follows that $0 \leq q \in L_{\mathrm{loc}}^{\infty}(M)$.
We now state the main result.
Theorem 3. Assume that (M, g) is a connected C^{∞}-Riemannian manifold without boundary, with metric g and a positive smooth measure $\mathrm{d} \mu$. Additionally, assume that (M, g) is complete. Assume that q satisfies the Assumption (A1). Then

$$
\begin{equation*}
\left\|\Delta_{M} u\right\|+\|q u\| \leq C(\|L u\|+\|u\|), \quad \text { for all } u \in D_{1} \tag{7}
\end{equation*}
$$

where $C \geq 0$ is a constant (independent of u).
The following corollary is an immediate consequence of Theorem 3.
Corollary 4. Under the hypotheses of Theorem 3, the differential expression L is separated in $L^{2}(M)$.

Remark 5. Theorem 3 extends a result of Boimatov [1, Theorem 4]concerning the separation property for the Schrödinger operator $-\Delta+q$ in $L^{2}\left(\mathbb{R}^{n}\right)$, where Δ is the standard Laplacian on \mathbb{R}^{n} with standard metric and measure and $0 \leq q \in C^{1}\left(\mathbb{R}^{n}\right)$. The problem of separation of differential expressions in $L^{2}\left(\mathbb{R}^{n}\right)$ has been studied by many authors; see, for instance, $[1,4]$ and references therein.

2. Proof of Theorem 3

2.1. Differential expression L_{V}

Let $0 \leq V \in C^{1}(M)$. In the sequel, by L_{V} we will denote the differential expression $L_{V}=\Delta_{M}+V$.

In the two preliminary lemmas, we will adopt the scheme of Boimatov [1] and Everitt and Giertz [4] to our context. In the proof of Theorem 3, we use the positivity preserving property of resolvents of self-adjoint closures of $\left.L_{V}\right|_{C_{c}^{\infty}(M)}$ and $\left.L\right|_{C_{c}^{\infty}(M)}$.
Lemma 6. Assume that (M, g) is a connected C^{∞}-Riemannian manifold without boundary, with metric g and a positive smooth measure $\mathrm{d} \mu$. Assume that $0 \leq V \in C^{1}(M)$ satisfies (6) with $\sigma \in[0,2)$. Then the following inequalities hold:

$$
\begin{equation*}
\left\|\Delta_{M} u\right\|+\|V u\| \leq \tilde{C}\left\|L_{V} u\right\|, \quad \text { for all } u \in C_{c}^{\infty}(M) \tag{8}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|V^{1 / 2} \mathrm{~d} u\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)} \leq \tilde{C}\left\|L_{V} u\right\|, \quad \text { for all } u \in C_{c}^{\infty}(M) \tag{9}
\end{equation*}
$$

where L_{V} is as in Section 2.1 and \tilde{C} is a constant depending on n and σ.
Proof. We will first prove that the following equality holds for any $v>0$:

$$
\begin{align*}
& \left\|L_{V} u\right\|^{2}=\|V u\|^{2}+v\left\|\Delta_{M} u\right\|^{2}+(1+v) \operatorname{Re}\left(V u, \Delta_{M} u\right)+(1-v) \operatorname{Re}\left(\Delta_{M} u, L_{V} u\right) \\
& \text { for all } u \in C_{c}^{\infty}(M) \tag{10}
\end{align*}
$$

Let $v>0$ be arbitrary. By the definition of L_{V}, for all $u \in C_{c}^{\infty}(M)$ we have

$$
\begin{aligned}
\left\|L_{V} u\right\|^{2} & =\|V u\|^{2}+\left\|\Delta_{M} u\right\|^{2}+2 \operatorname{Re}\left(\Delta_{M} u, V u\right) \\
& =\|V u\|^{2}+v\left\|\Delta_{M} u\right\|^{2}+(1-v)\left\|\Delta_{M} u\right\|^{2}+2 \operatorname{Re}\left(\Delta_{M} u, V u\right) \\
& =\|V u\|^{2}+v\left\|\Delta_{M} u\right\|^{2}+(1-v) \operatorname{Re}\left(\Delta_{M} u, L_{V} u-V u\right)+2 \operatorname{Re}\left(\Delta_{M} u, V u\right) \\
& =\|V u\|^{2}+v\left\|\Delta_{M} u\right\|^{2}+(1-v) \operatorname{Re}\left(\Delta_{M} u, L_{V} u\right)+(1+v) \operatorname{Re}\left(\Delta_{M} u, V u\right),
\end{aligned}
$$

where (\cdot, \cdot) is as in (1) and $\|\cdot\|$ is the corresponding norm in $L^{2}(M)$.
Since $u \in C_{c}^{\infty}(M)$, using integration by parts and the product rule, we have

$$
\begin{align*}
\operatorname{Re}\left(\Delta_{M} u, V u\right) & =\operatorname{Re}\left(\mathrm{d}^{*} \mathrm{~d} u, V u\right)=\operatorname{Re}(\mathrm{d} u, \mathrm{~d}(V u))_{L^{2}\left(\Lambda^{1} T^{*} M\right)} \\
& =\operatorname{Re}(\mathrm{d} u,(\mathrm{~d} V) u+V \mathrm{~d} u)_{L^{2}\left(\Lambda^{1} T^{*} M\right)} \\
& =\operatorname{Re}(\mathrm{d} u,(\mathrm{~d} V) u)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}+(\mathrm{d} u, V \mathrm{~d} u)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}=(\operatorname{Re} Z)+W, \tag{11}
\end{align*}
$$

where

$$
\begin{equation*}
Z=\int_{M}\langle\mathrm{~d} u, \bar{u}(\mathrm{~d} V)\rangle \mathrm{d} \mu \tag{12}
\end{equation*}
$$

and

$$
\begin{equation*}
W=\left(V^{1 / 2} \mathrm{~d} u, V^{1 / 2} \mathrm{~d} u\right)_{L^{2}\left(\Lambda^{1} T^{*} M\right)} \tag{13}
\end{equation*}
$$

From (11) we get

$$
\begin{equation*}
(1+v) \operatorname{Re}\left(\Delta_{M} u, V u\right)=(1+v) \operatorname{Re} Z+(1+v) W \geq-(1+v)|Z|+(1+v) W \tag{14}
\end{equation*}
$$

We will now estimate $|Z|$, where Z is as in (12). Using the Cauchy-Schwarz inequality and the inequality

$$
\begin{equation*}
2 a b \leq k a^{2}+k^{-1} b^{2} \tag{15}
\end{equation*}
$$

where a, b and k are positive real numbers, we get for any $\delta>0$:

$$
\begin{align*}
|Z| & \leq \int_{M}|\mathrm{~d} u||\mathrm{d} V||u| \mathrm{d} \mu \leq \sigma \int_{M} V^{3 / 2}\left|u \left\||\mathrm{~d} u| \mathrm{d} \mu=\sigma \int_{M}\left|V^{1 / 2} \mathrm{~d} u \| V u\right| \mathrm{d} \mu\right.\right. \\
& \leq \frac{\nu \delta}{2}\left\|V^{1 / 2} \mathrm{~d} u\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}^{2}+\frac{\sigma^{2}}{2 v \delta}\|V u\|^{2} \tag{16}
\end{align*}
$$

Here, for $\xi \in T_{x}^{*} M$, the notation $|\xi|$ denotes the norm of ξ with respect to the inner product in $T_{x}^{*} M$ induced by the metric g. In the second inequality in (16), we used (6), and in the third inequality in (16) we used (15).

Using (15), for any $\alpha>0$ we get

$$
\begin{equation*}
\left|\operatorname{Re}\left(\Delta_{M} u, L_{V} u\right)\right| \leq\left|\left(\Delta_{M} u, L_{V} u\right)\right| \leq \frac{\alpha}{2}\left\|\Delta_{M} u\right\|^{2}+\frac{1}{2 \alpha}\left\|L_{V} u\right\|^{2} \tag{17}
\end{equation*}
$$

Combining (10), (14), (16) and (17) we obtain

$$
\begin{align*}
\left\|L_{V} u\right\|^{2} \geq & \|V u\|^{2}+\nu\left\|\Delta_{M} u\right\|^{2}-\frac{(1+\nu) v \delta}{2}\left\|V^{1 / 2} \mathrm{~d} u\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}^{2} \\
& -\frac{(1+\nu) \sigma^{2}}{2 v \delta}\|V u\|^{2}+(1+\nu)\left\|V^{1 / 2} \mathrm{~d} u\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}^{2} \\
& -\frac{|1-\nu| \alpha}{2}\left\|\Delta_{M} u\right\|^{2}-\frac{|1-\nu|}{2 \alpha}\left\|L_{V} u\right\|^{2} . \tag{18}
\end{align*}
$$

From (18) we get

$$
\begin{align*}
\left(1+\frac{|1-v|}{2 \alpha}\right)\left\|L_{V} u\right\|^{2} \geq & \left(1-\frac{(1+v) \sigma^{2}}{2 v \delta}\right)\|V u\|^{2}+\left(v-\frac{|1-v| \alpha}{2}\right)\left\|\Delta_{M} u\right\|^{2} \\
& +\left((1+v)-\frac{(1+v) v \delta}{2}\right)\left\|V^{1 / 2} \mathrm{~d} u\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}^{2} \tag{19}
\end{align*}
$$

The inequalities (8) and (9) will immediately follow from (19) if

$$
\begin{equation*}
|1-v|<\frac{2 v}{\alpha}, \quad \nu \delta<2, \quad \text { and } \quad(1+v) \sigma^{2}<2 \nu \delta \tag{20}
\end{equation*}
$$

Since, by hypothesis, $0 \leq \sigma<2$, there exist numbers $v>0, \alpha>0$ and $\delta>0$ such that the inequalities (20) hold.

This concludes the proof of the lemma.
In the sequel, we will also use the following terms and notations.

2.2. Minimal operators S and T

Let L be as in (3) and let L_{V} be as in Section 2.1. We define the minimal operators S and T in $L^{2}(M)$ associated to L and L_{V} by the formulas $S u=L u$ and $T u=L_{V} u$ with the domains $\operatorname{Dom}(S)=\operatorname{Dom}(T)=C_{c}^{\infty}(M)$. Since S and T are symmetric operators, it follows that S and T is closable; see, for example, Section V.3.3 in [6]. In what follows, we will denote by \tilde{S} and \tilde{T} the closures in $L^{2}(M)$ of the operators S and T, respectively.

2.3. Maximal operators H and K

Let L be as in (3). We define the maximal operator H in $L^{2}(M)$ associated to L by the formula $H u=S^{*} u$, where S^{*} is the adjoint of the operator S in $L^{2}(M)$. In the case when $q \in L_{\mathrm{loc}}^{2}(M)$ is real-valued, it is well-known that $\operatorname{Dom}(H)=D_{1}$, where D_{1} is as in (4). Let L_{V} be as in Section 2.1. We define the maximal operator K in $L^{2}(M)$ associated to L_{V} by the formula $K u=T^{*} u$, and we have $\operatorname{Dom}(K)=\left\{u \in L^{2}(M): L_{V} u \in L^{2}(M)\right\}$.

Remark 7. By Lemma 5.1 from [9] it follows that $\operatorname{Dom}(K) \subset W_{\text {loc }}^{2,2}(M)$.

2.4. Essential self-adjointness of S and T

If (M, g) is a complete Riemannian manifold with metric g and positive smooth measure $\mathrm{d} \mu$ and if $0 \leq q \in L_{\mathrm{loc}}^{2}(M)$, then by Theorem 1.1 in [9] (or by Corollary 2.9 in [2]) the operator S is essentially self-adjoint in $L^{2}(M)$. In this case, we have $\tilde{S}=S^{*}$; see, for example, Section V.3.3 in [6]. In particular, since $0 \leq V \in C^{1}(M) \subset L_{\mathrm{loc}}^{2}(M)$, it follows that the operator T is essentially self-adjoint in $L^{2}(M)$.

Lemma 8. Assume that (M, g) is a connected C^{∞}-Riemannian manifold without boundary, with metric g and a positive smooth measure $\mathrm{d} \mu$. Additionally, assume that (M, g) is complete. Assume that $0 \leq V \in C^{1}(M)$ satisfies (6). Then the inequalities (8) and (9) hold for all $u \in \operatorname{Dom}(K)$, where K is as in Section 2.3.
Proof. Under the hypotheses of this lemma, by Section 2.4 it follows that T is essentially self-adjoint and $K=T^{*}=\tilde{T}$. In particular, $\operatorname{Dom}(\tilde{T})=\operatorname{Dom}(K)$.

Let $u \in \operatorname{Dom}(K)$. Then there exists a sequence $\left\{u_{k}\right\}$ in $C_{c}^{\infty}(M)$ such that

$$
u_{k} \rightarrow u \quad \text { and } \quad L_{V} u_{k} \rightarrow \tilde{T} u \quad \text { in } \quad L^{2}(M), \quad \text { as } k \rightarrow \infty
$$

Since by Lemma 6 the sequence $\left\{u_{k}\right\}$ satisfies (8) and (9), it follows that the sequences $\left\{V u_{k}\right\}$ and $\left\{\Delta_{M} u_{k}\right\}$ are Cauchy sequences in $L^{2}(M)$, and $\left\{V^{1 / 2} \mathrm{~d} u_{k}\right\}$ is a Cauchy sequence in $L^{2}\left(\Lambda^{1} T^{*} M\right)$.

We will first show that

$$
\begin{equation*}
V u_{k} \rightarrow V u \quad \text { in } \quad L^{2}(M), \quad \text { as } \quad k \rightarrow \infty . \tag{21}
\end{equation*}
$$

Since $\left\{V u_{k}\right\}$ is a Cauchy sequence in $L^{2}(M)$, it follows that $V u_{k}$ converges to $s \in L^{2}(M)$. Let ϕ be an arbitrary element of $C_{c}^{\infty}(M)$. Then

$$
\begin{equation*}
0=\left(V u_{k}, \phi\right)-\left(u_{k}, V \phi\right) \rightarrow(s, \phi)-(u, V \phi)=(s-V u, \phi), \tag{22}
\end{equation*}
$$

where (\cdot, \cdot) is as in (1).
Since $C_{c}^{\infty}(M)$ is dense in $L^{2}(M)$, we get $s=V u$, and (21) is proven.
If (M, g) is complete, it is well-known that Δ_{M} is essentially self-adjoint on $C_{c}^{\infty}(M)$, and we have the following equality:

$$
\left(\left.\Delta_{M}\right|_{C_{c}^{\infty}(M)} ^{\infty}\right)^{\sim}=\Delta_{M, \max },
$$

where $\Delta_{M, \max } u:=\Delta_{M} u$ with the domain

$$
\operatorname{Dom}\left(\Delta_{M, \max }\right)=\left\{u \in L^{2}(M): \Delta_{M} u \in L^{2}(M)\right\} ;
$$

see, for example, Theorem 3.5 in [3].
Since $u_{k} \rightarrow u$ in $L^{2}(M)$ and since $\left\{\Delta_{M} u_{k}\right\}$ is a Cauchy sequence in $L^{2}(M)$, by the definition of $\left(\left.\Delta_{M}\right|_{C_{c}^{\infty}(M)}\right)^{\sim}$ it follows that $u \in \operatorname{Dom}\left(\left(\left.\Delta_{M}\right|_{C_{c}^{\infty}(M)}\right)^{\sim}\right)$. Since $\left(\left.\Delta_{M}\right|_{C_{c}^{\infty}(M)}\right)^{\sim}=$ $\Delta_{M, \text { max }} u$, we have

$$
\begin{equation*}
\Delta_{M} u_{k} \rightarrow \Delta_{M} u \quad \text { in } \quad L^{2}(M), \quad \text { as } \quad k \rightarrow \infty \tag{23}
\end{equation*}
$$

Since $\left\{\Delta_{M} u_{k}\right\}$ and $\left\{u_{k}\right\}$ are Cauchy sequences in $L^{2}(M)$ and since

$$
\left\|\mathrm{d} u_{k}\right\|_{L^{2}\left(\Lambda^{1} T^{*} M\right)}^{2}=\left(\mathrm{d} u_{k}, \mathrm{~d} u_{k}\right)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}=\left(\Delta_{M} u_{k}, u_{k}\right) \leq\left\|\Delta_{M} u_{k}\right\|\left\|u_{k}\right\|,
$$

it follows that $\left\{\mathrm{d} u_{k}\right\}$ is a Cauchy sequence in $L^{2}\left(\Lambda^{1} T^{*} M\right)$, and, hence, $\mathrm{d} u_{k}$ converges to some element $\omega \in L^{2}\left(\Lambda^{1} T^{*} M\right)$. Let $\psi \in \Omega_{c}^{1}(M)$ be arbitrary. Then, using integration by parts (see, for example, Lemma 8.8 in [2]) and Remark 7, we get

$$
\begin{align*}
0 & =\left(\mathrm{d} u_{k}, \psi\right)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}-\left(u_{k}, \mathrm{~d}^{*} \psi\right) \rightarrow(\omega, \psi)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}-\left(u, \mathrm{~d}^{*} \psi\right) \\
& =(\omega, \psi)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}-(\mathrm{d} u, \psi)_{L^{2}\left(\Lambda^{1} T^{*} M\right)}, \tag{24}
\end{align*}
$$

where (\cdot, \cdot) is the inner product in $L^{2}(M)$.
From (24) we get $\mathrm{d} u=\omega \in L^{2}\left(\Lambda^{1} T^{*} M\right)$, and, hence,

$$
\begin{equation*}
\mathrm{d} u_{k} \rightarrow \mathrm{~d} u, \quad \text { in } \quad L^{2}\left(\Lambda^{1} T^{*} M\right), \quad \text { as } \quad k \rightarrow \infty \tag{25}
\end{equation*}
$$

Since $\left\{V^{1 / 2} \mathrm{~d} u_{k}\right\}$ is a Cauchy sequence in $L^{2}\left(\Lambda^{1} T^{*} M\right)$, using (25) and the same argument as in (22), we obtain

$$
\begin{equation*}
V^{1 / 2} \mathrm{~d} u_{k} \rightarrow V^{1 / 2} \mathrm{~d} u, \quad \text { in } \quad L^{2}\left(\Lambda^{1} T^{*} M\right), \quad \text { as } \quad k \rightarrow \infty \tag{26}
\end{equation*}
$$

Using (21), (23), (26) and taking limits as $k \rightarrow \infty$ in all terms in (8) and (9) (with u replaced by u_{k}), shows that (8) and (9) hold for all $u \in \operatorname{Dom}(\tilde{T})=\operatorname{Dom}(K)$. This concludes the proof of the lemma.

2.5. Operators R_{1} and R_{2}

Let S and T be as in Section 2.2 and let H and K be as in Section 2.3. By Section 2.4 the operators $H=\tilde{S}$ and $K=\tilde{T}$ are non-negative self-adjoint in $L^{2}(M)$. Thus,

$$
\begin{align*}
& R_{1}:=(H+1)^{-1}: L^{2}(M) \rightarrow L^{2}(M), \\
& R_{2}:=(K+1)^{-1}: L^{2}(M) \rightarrow L^{2}(M) \tag{27}
\end{align*}
$$

are bounded linear operators.

2.6. Positivity preserving property

For the following definition, see, for example, the definition below the formulation of Theorem X. 30 in [8].

Let (X, μ) be a measure space. A bounded linear operator $A: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ is said to be positivity preserving if for every $u \in L^{2}(X, \mu)$ such that $u \geq 0$ a.e. on X, we have $A u \geq 0$ a.e. on X.

Remark 9. Let $A: L^{2}(X, \mu) \rightarrow L^{2}(X, \mu)$ be a positivity preserving bounded linear operator. Then the following inequality holds for all $u \in L^{2}(X, \mu)$:

$$
\begin{equation*}
|(A u)(x)| \leq A|u(x)|, \quad \text { a.e. on } \quad X \tag{28}
\end{equation*}
$$

where $|\cdot|$ denotes the absolute value of a complex number. For the proof of (28), see the proof of the inequality (X.103) in [8].

In the sequel, we will use the following proposition.

Proposition 10. Assume that (M, g) is a (not necessarily complete) C^{∞}-Riemannian manifold without boundary. Assume that M is connected and oriented. Assume that $Q_{0} \in$ $L_{\mathrm{loc}}^{2}(M)$ is real-valued. Additionally, assume that

$$
\left(\left(\Delta_{M}+Q_{0}\right) u, u\right) \geq 0, \quad \text { forall } u \in C_{c}^{\infty}(M)
$$

Let S_{0} be the Friedrichs extension of $\left.\left(\Delta_{M}+Q_{0}\right)\right|_{C_{c}^{\infty}(M)}$. Assume that λ is a positive real number. Then the operator $\left(S_{0}+\lambda\right)^{-1}$ is positivity preserving.

Remark 11. For the proof of Proposition 10, which is based on Kato's inequality technique on Riemannian manifolds, see the proof of Proposition 2.13 in [7]. Proposition 10 is an extension to Riemannian manifolds of Lemma 2 from Goelden [5]. For more on Kato's inequality technique on Riemannian manifolds and its application to essential self-adjointness of Schrödinger-type operators, see [2] and references there.

From Proposition 10 we obtain the following corollary.
Corollary 12. Assume that (M, g) is a complete C^{∞}-Riemannian manifold without boundary. Assume that M is connected and oriented. Assume that $0 \leq q \in L_{\mathrm{loc}}^{2}(M)$ and $0 \leq V \in C^{1}(M)$. Let R_{1} and R_{2} be as in (27). Then the operators R_{1} and R_{2} are positivity preserving.

Proof. Since (M, g) is complete, by Section 2.4 it follows that S and T are nonnegative essentially self-adjoint operators in $L^{2}(M)$. Thus, the Friedrichs extensions of $\left.\left(\Delta_{M}+q\right)\right|_{C_{c}^{\infty}(M)}$ and $\left.\left(\Delta_{M}+V\right)\right|_{C_{c}^{\infty}(M)}$ are H and K, respectively. By Proposition 10 it follows that R_{1} and R_{2} are positivity preserving operators in $L^{2}(M)$.

Proof of Theorem 3. By Lemma 8 it follows that

$$
\begin{equation*}
\|V u\| \leq \tilde{C}\|K u\|, \quad \text { for all } u \in \operatorname{Dom}(K) \tag{29}
\end{equation*}
$$

Let R_{2} be as in (27) and let $V: L^{2}(M) \rightarrow L^{2}(M)$ denote the maximal multiplication operator corresponding to the function V.

From (29) it follows that $V R_{2}: L^{2}(M) \rightarrow L^{2}(M)$ is a bounded linear operator.
Let $q: L^{2}(M) \rightarrow L^{2}(M)$ denote the maximal multiplication operator corresponding to the function q. Since $V R_{2}: L^{2}(M) \rightarrow L^{2}(M)$ is a bounded linear operator, by (5) it follows that $q R_{2}: L^{2}(M) \rightarrow L^{2}(M)$ is a bounded linear operator.

We will now show that $q R_{1}$ is a bounded linear operator: $L^{2}(M) \rightarrow L^{2}(M)$.
First, we will show that

$$
\begin{equation*}
q R_{1} f \leq q R_{2} f, \quad \text { for all } 0 \leq f \in L^{2}(M) \tag{30}
\end{equation*}
$$

Here, the inequality is understood in a pointwise sense. (Since $\left(R_{1} f\right) \in D_{1} \subset L^{2}(M)$ and since $q \in L_{\mathrm{loc}}^{2}(M)$, it follows that $\left(q R_{1} f\right) \in L_{\mathrm{loc}}^{1}(M)$ is a function.)

Let $0 \leq f \in L^{2}(M)$ be arbitrary. Since

$$
R_{2} f \in \operatorname{Dom}(K)=\left\{z \in L^{2}(M): L_{V} z \in L^{2}(M)\right\}
$$

by Lemma 8 we have $\left(\Delta_{M}\left(R_{2} f\right)\right) \in L^{2}(M)$ and $\left(V R_{2} f\right) \in L^{2}(M)$. Since $q R_{2}: L^{2}(M) \rightarrow$ $L^{2}(M)$ is a bounded linear operator, we get $\left(q R_{2} f\right) \in L^{2}(M)$. Thus $R_{2} f \in D_{1}$, and, hence,

$$
\begin{equation*}
q R_{2} f=q R_{1}(H+1) R_{2} f \tag{31}
\end{equation*}
$$

By the definition of R_{2} have

$$
\begin{equation*}
q R_{1} f=q R_{1}(K+1) R_{2} f . \tag{32}
\end{equation*}
$$

From (31) and (32) we have

$$
\begin{equation*}
q R_{2} f-q R_{1} f=q R_{1}\left((H+1) R_{2} f-(K+1) R_{2} f\right)=q R_{1}\left((q-V) R_{2} f\right) \tag{33}
\end{equation*}
$$

Since R_{2} is positivity preserving in $L^{2}(M)$, we have $R_{2} f \geq 0$. Since $V R_{2}$ and $q R_{2}$ are bounded linear operators $L^{2}(M) \rightarrow L^{2}(M)$ and since $q-V \geq 0$, we have

$$
\begin{equation*}
0 \leq(q-V) R_{2} f \in L^{2}(M) \tag{34}
\end{equation*}
$$

Since R_{1} is positivity preserving in $L^{2}(M)$, from (34) we get

$$
\begin{equation*}
R_{1}\left((q-V) R_{2} f\right) \geq 0 \tag{35}
\end{equation*}
$$

Since $q \geq 0$, from (33) and (35) we get

$$
q R_{2} f-q R_{1} f=q R_{1}\left((q-V) R_{2} f\right) \geq 0
$$

and (30) is proven.
Let $w \in L^{2}(M)$ be arbitrary. Since $R_{1}: L^{2}(M) \rightarrow L^{2}(M)$ is a positivity preserving bounded linear operator, by (28) we have the following pointwise inequality:

$$
\begin{equation*}
\left|R_{1} w\right| \leq R_{1}|w| \tag{36}
\end{equation*}
$$

Since $q \geq 0$, from (36) and (30) we obtain the following pointwise inequality:

$$
\begin{equation*}
\left|q R_{1} w\right|=q\left|R_{1} w\right| \leq q R_{1}|w| \leq q R_{2}|w| . \tag{37}
\end{equation*}
$$

Since $q R_{2}: L^{2}(M) \rightarrow L^{2}(M)$ is a bounded linear operator, from (37) it follows that

$$
\left\|q R_{1} w\right\| \leq\left\|q R_{2}|w|\right\| \leq C_{3}\|w\|, \quad \text { for all } w \in L^{2}(M)
$$

where $C_{3} \geq 0$ is a constant.
Hence, $q R_{1}$ is a bounded linear operator: $L^{2}(M) \rightarrow L^{2}(M)$.
Let $u \in D_{1}$ be arbitrary. Then $q u=q R_{1}(u+L u)$, where $L u=\Delta_{M} u+q u$.
Since $q R_{1}: L^{2}(M) \rightarrow L^{2}(M)$ is a bounded linear operator, we have

$$
\begin{equation*}
\|q u\| \leq C_{1}(\|u\|+\|L u\|), \quad \text { for all } u \in D_{1} \tag{38}
\end{equation*}
$$

where $C_{1} \geq 0$ is a constant.
Using (38) we get

$$
\begin{equation*}
\left\|\Delta_{M} u\right\|=\|L u-q u\| \leq\|L u\|+\|q u\| \leq C_{2}(\|u\|+\|L u\|), \quad \text { for all } u \in D_{1}, \tag{39}
\end{equation*}
$$

where $C_{2} \geq 0$ is a constant.
From (38) and (39) we obtain (7). This concludes the proof of the Theorem.

References

[1] K.Kh. Boimatov, Coercive estimates and separation for second order elliptic differential equations, Sov. Math. Dokl. 38 (1) (1989) 157-160.
[2] M. Braverman, O. Milatovic, M. Shubin, Essential self-adjointness of Schrödinger type operators on manifolds, Russ. Math. Surv. 57 (4) (2002) 641-692.
[3] J. Eichhorn, Elliptic differential operators on noncompact manifolds, in: Proceedings of the Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics, Teubner, Leipzig, Berlin, 1986/87, Teubner-Texte Math. 106, 1988, 4-169.
[4] W.N. Everitt, M. Giertz, Inequalities and separation for Schrödinger type operators in $L^{2}\left(\mathbb{R}^{n}\right)$, Proc. Royal Soc. Edinb. 79A (1977) 257-265.
[5] H.-W. Goelden, On non-degeneracy of the ground state of Schrödinger operators, Math. Z. 155 (1977) 239-247.
[6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
[7] O. Milatovic, The form sum and the Friedrichs extension of Schrödinger-type operators on Riemannian manifolds, Proc. Am. Math. Soc. 132 (1) (2004) 147-156.
[8] M. Reed, B. Simon, Methods of Modern Mathematical Physics I, II: Functional Analysis. Fourier Analysis, Self-adjointness, Academic Press, New York, 1975.
[9] M.A. Shubin, Essential self-adjointness for semibounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal. 186 (2001) 92-116.

[^0]: * Tel.: +1 9046201745.

 E-mail address: omilatov@unf.edu.

