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Abstract

We consider a Schdinger differential expressioh = A, + ¢ on a complete Riemannian man-
ifold (M, g) with metric g, whereA,, is the scalar Laplacian oW andg > 0 is a locally square
integrable function or/. In the terminology of Everitt and Giertz, the differential expresdios
said to be separated it?(M) if for all u € L2(M) such thatLu € L>(M), we havequ € L?(M). We
give sufficient conditions fok to be separated ih?(M).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and the main result
1.1. The setting
Let (M, g) be a Riemannian manifold without boundary (Meis aC*°-manifold without

boundary, £ i) is a Riemannian metric ol) and dimM = n. We will assume tha¥/ is
connected. We will also assume that we are given a positive smooth megasiuee th any
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local coordinates!, x?, ..., x” there exists a strictly positiv€>-densityp(x) such that
du = p(x)dxldx?, ..., dx".

In the sequelL2(M) is the space of complex-valued square integrable functiorid on
with the inner product:

(u,v) = /M(ua du, 1)

and|| - || is the norm inL2(M) corresponding to the inner prodyas.
We use the notatio.2(A1T*M) for the space of complex-valued square integrable
1-forms onM with the inner product:

(. W) 2garreny = /M (w, P, )
where for 1-formsy = w; dx/ andyr = vy dxk, we define

(. ¥) = g0,
where g/¥) is the inverse matrix tog(x), and

¥ = Y ek

(Above we used the standard Einstein summation convention.)

The notation|| - [| 2417+ Stands for the norm i.%(A'T* M) corresponding to the
inner produc(2).

In what follows, byC° (M) we denote the space of smooth functiondfty C2°(M)—
the space of smooth compactly supported function®pby £21(M)—the space of smooth
1-forms onM and by.Q}.(M)—the space of smooth compactly supported 1-formsfon

In the sequel, the operatadr: C*°(M) — £21(M) is the standard differential, and

d* . Y (M) — Cc®(M)
is the formal adjoint of/ defined by the identity:
(du, ©) 2 p17pr) = (1. d* ), u € CX(M), w € 2Y(M).

By Ay := d*d we will denote the scalar Laplacian oh
We consider a Schdinger-type differential expression:

2

whereg € Lig,

(M) is a real-valued function.
1.2. The set D1

Let L be as in(3). In the sequel, we will use the notation:

D1:={u € L3(M): Lu € L*(M)}, (4)
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whereLu is understood in the sense of distributions.

Remark 1. In general, it is not true that for al € D1 we haveA yu € L?(M) andqu €
L?(M) separately.

Using the terminology of Everitt and Gier#], we will say that the differential expression
L = Ay + g is separated il.2(M) when the following statement holds true:

forall u € D1, we havequ € L3(M).

We will give sufficient conditions fof. to be separated ih?(M).
First, we make assumptions gn
Assumption (A1). Assume that there exists a functionOV e C1(M) such that
V(x) = q(x) =cV(x) (5)
and
dV(x)| < oV3¥?(x),  forallx e M, (6)
wherec > 0 and 0< o < 2 are constants.

In (6), the notation/dV(x)| denotes the norm of¥(x) € T;"M with respect to the inner
product in7; M induced by the metrig.

Remark 2. From(5) it follows that 0< g € Li.(M).

We now state the main result.

Theorem 3. Assume that (M, g) is a connected C°°-Riemannian manifold without bound-
ary, with metric g and a positive smooth measure du. Additionally, assume that (M, g) is
complete. Assume that q satisfies the Assumption (Al). Then

IAMull + llqull = CULull + lull), forallu € Dy, ()

where C > Qis a constant (independent of u).
The following corollary is an immediate consequencdloéorem 3

Corollary 4. Under the hypotheses of Theorem 3the differential expression L is separated
in L?(M).

Remark 5. Theorem 3extends a result of Boimatdi, Theorem 4d¢oncerning the sepa-
ration property for the Scbdinger operator-A + ¢ in L2(R"), whereA is the standard
Laplacian onR” with standard metric and measure ang @ € C(R"). The problem of
separation of differential expressionsliA(R") has been studied by many authors; see, for
instance[1,4] and references therein.
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2. Proof of Theorem 3
2.1. Differential expression Ly

Let 0< V e CY(M). In the sequel, byLy we will denote the differential expression
Ly=Apy+V.

In the two preliminary lemmas, we will adopt the scheme of Boim§tdand Everitt
and Giertz[4] to our context. In the proof ofheorem 3we use the positivity preserving
property of resolvents of self-adjoint closureslof|cse vy and L |cse(u)-

Lemma 6. Assume that (M, g) is a connected C°°-Riemannian manifold without boundary,
with metric g and a positive smooth measure di. Assume that 0 < V € CY(M) satisfies (6)
with o € [0, 2). Then the following inequalities hold:

I Apull + [ Vall < Cl| Lyull, forallu € CZ(M), (8)
and
IVY20ull 2 p17+pry < CllLvull,  forallu € CX(M), 9)
where Ly is as in Section2.1and C is a constant depending onn and o.
Proof. We will first prove that the following equality holds for amy> 0:
ILvul® = [IVul|® + vl Apull® + (1 + v)Re(Vu, Apue) + (1 — v)Re@pu, Lyu),
forallu € C2°(M). (10)
Letv > O be arbitrary. By the definition df v, for all u € C3°(M) we have
ILyul® = [|Vul® + || Apull® + 2Re@ pu, Vi)
= IVuell? + vl Ayl + (1 = v)| Ayul)? + 2Re@pu, Vu)
= | Vull? + vl Apull?> + (1 — v)Re@A yu, Lyu — Vu) + 2Re(A pu, Vi)
= IVull® + v Apull® + (1 — v)Re@yu, Lyu) + (L + v)Re(@ yu, V),

where (, -) is as in(1) and| - || is the corresponding norm ib2(M).
Sinceu € C°(M), using integration by parts and the product rule, we have

Re(AMM, VM) = Re(dkdl/i, VM) = Re(dA, d(V”))LZ(AlT*M)
= Re(d/l, (dV)M + V du)LZ(AlT*M)
= Re(dt, (dV)M)LZ(AlT*M) + (dl/l, \% du)LZ(AlT*M) = (ReZ) + W,
(11)

where

Z= / (du, @(dV)) dp (12)
M
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and
W = (VY2 du, VY2 du) 2 p17+ gy (13)
From(11) we get
1+ v)Re(Ayu, Vu) = (L+v)ReZ + (L + )W > —(1+ )| Z| + L+ v)W. (14)

We will now estimatg Z|, whereZ is as in(12). Using the Cauchy-Schwarz inequality
and the inequality

2ab < ka® + k~1b?, (15)

wherea, b andk are positive real numbers, we get for ahy 0:

IZlf/ IdulldVlluIdMSU/ V3/2Iu||du|du=0/ VY2 || Vie| de
M M M

< 2 vvz gy vl 16
= E” u||L2(A1T*M)+TM|l M” . ( )

Here, foré € T; M, the notatior|é| denotes the norm @fwith respect to the inner product
in 7;°M induced by the metrig. In the second inequality i(.6), we used6), and in the
third inequality in(16) we used15).

Using(15), for anya > 0 we get

o 1
IRe(A yu, Lyu)| < [(Apu, Lyu)| < E||AMu||2+ ZI|LVM||2~ 17)

Combining(10), (14), (16) and (17Ave obtain

A+ v)vé
ILyul® = 1 Vull? + vl Apull? = === VY2 dulF o p17-
(14 v)o?
= e Va4 ) IV 2 il o g1y
|1—v|a |1—v|
— Al = == Lvul®, (18)

From(18) we get

1—v 1—{—1)02 1— v«
(1+' ')nLvunZz(l—())||Vu||2+(v—' ')HAMunZ

20 2vé 2
1+ v)vs

The inequalitieg8) and (9)will immediately follow from(19) if
2
[1—v| < —v, 8§ <2, and (1+ v)o? < 2u8. (20)
o

Since, by hypothesis, 8 o < 2, there exist numbens> 0,« > 0 and$ > 0 such that the
inequalities(20) hold.
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This concludes the proof of the lemmall

In the sequel, we will also use the following terms and notations.
2.2. Minimal operators S and T

Let L be as in(3) and letLy be as in Sectio2.1. We define the minimal operatofs
andT in L2(M) associated té. andLy by the formulasSu = Lu andTu = Lyu with the
domains Dom§) = Dom(T) = C2°(M). SinceS andT are symmetric operators, it follows
thatS andT is closable; see, for example, Section V.3.36h In what follows, we will
denote byS and7 the closures iL2(M) of the operators and7, respectively.

2.3. Maximal operators H and K

Let L be as in(3). We define the maximal operatéitin L2(M) associated td by the
formula Hu = S*u, whereS* is the adjoint of the operatdtin L2(M). In the case when
qE€ Lloc(M) is real-valued, it is well-known that Dorf() = D1, whereD; is as in(4). Let
Ly be as in Sectio.1 We define the maximal operat&ftin L2(M) associated td.y by
the formulaku = T*u, and we have Donk) = {u € L?>(M) : Lyu € L?(M)).

Remark 7. By Lemma 5.1 fron{9] it follows that DomK) C Wloc (M).
2.4. Essential self-adjointness of S and T

If(M, g)isa complete Riemannian manifold with metgiand positive smooth measure
duandifO<gqe Lloc(M) then by Theorem 1.1 iff] (or by Corollary 2.9 in[2]) the
operatorsS is essentially self-adjoint irL2(M). In this case, we havé = S*; see, for
example, Section V.3.3 if6]. In particular, since & V € CY(M) c L oc(M), it follows
that the operator is essentially self-adjoint in.2(M).

Lemma 8. Assume that (M, g) is a connected C*°-Riemannian manifold without bound-
ary, with metric g and a positive smooth measure du. Additionally, assume that (M, g) is
complete. Assume that 0 < 'V € CY(M) satisfies (6). Then the inequalities (8) and (9) hold
for all u € Dom(K), where K is as in Section2.3.

Proof. Under the hypotheses of this lemma, by Secflohit follows that7 is essentially
self-adjoint andK = 7* = T. In particular, Dom{’) = Dom(K).
Letu € Dom(K). Then there exists a sequer{ag} in C2°(M) such that

ur —u and Lyug — Tu in LZ(M), ask — oo.

Since byLemma 6the sequencéuy} satisfies(8) and (9) it follows that the sequences
{Vuy} and{A yuy} are Cauchy sequencesiid(M), and{V/2du;} is a Cauchy sequence
in L2(AYT*M).

We will first show that

Vurp — Vu in L%(M), as k — oo. (21)
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Since{Vu;} is a Cauchy sequence ir?(M), it follows that Vi, converges ta € L?(M).
Let ¢ be an arbitrary element @f2°(M). Then

0= (Vuk’ ¢) - (ukv V¢) - (S’ ¢) - (M, V¢) = (S - VM’ ¢)’ (22)

where (, -) is as in(1).

SinceC°(M) is dense inL?(M), we gets = Vu, and(21)is proven.

If (M, g) is complete, it is well-known thad , is essentially self-adjoint oG6'2°(M),
and we have the following equality:

(Apmlczen)” = Ammax
whereA y maxu := Apu with the domain
DOM(A pr.max) = {u € L3(M) : Apyu € LA(M)};

see, for example, Theorem 3.5[8j.

Sinceuy — u in L3(M) and since{A yuy} is a Cauchy sequence (M), by the
definition of (A | co(ar)) ™ it follows thatu € Dom((Aw|c(am))™)- Since Buplcxmr)™ =
Ay maxtt, We have

Apur — Ayu in LZ(M), as k — oo. (23)

Since{Ayui} and{uy} are Cauchy sequenceslif(M) and since
10k 12 o g1 pgy = (ks Dutk) p2(a17+pry = (Anater, i) < | Apguel el

it follows that {du} is a Cauchy sequence It?(A1T*M), and, hence, &}, converges to
some elemenb € L2(AT*M). Lety € 221(M) be arbitrary. Then, using integration by
parts (see, for example, Lemma 8.92)) andRemark 7 we get

0 = (duk, ¥) 2017+ my — (k, EY) = (@, V) 204171y — (u, d°Y)
= (@, ¥)r2(arrear) — (A, ¥) 204175 p1)s (24)

where (, -) is the inner product i 2(M).
From(24)we get d = w € L2(A1T*M), and, hence,

dup — du, in L*(AT*M), as k — oco. (25)

Since{V/2 du; } is a Cauchy sequencelrf(A1T* M), using(25)and the same argument
as in(22), we obtain

VvY2duy — V¥2du, in L2(AT*M), as k — oo. (26)

Using (21), (23), (26)and taking limits as — oo in all terms in(8) and (9)(with u
replaced by;), shows tha(8) and (9hold for allu € Dom(T) = Dom(K). This concludes
the proof of the lemma. O
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2.5. Operators R1 and R»

LetS and7 be as in Sectio@.2and letH andK be as in Sectio@.3 By Section2.4the
operatorsH = S andK = T are non-negative self-adjoint it?(M). Thus,

Ri=(H+1)1: L2(M) — L3(M),
Ry = (K + 1)t L2(M) > L?(M) (27)

are bounded linear operators.

2.6. Positivity preserving property

For the following definition, see, for example, the definition below the formulation of
Theorem X.30 iH8].

Let (X, 1) be a measure space. A bounded linear operitoE.2(X, 1) — L3(X, u) is
said to bepositivity preserving if for everyu e L?(X, ) such thait > 0 a.e. orX, we have
Au > 0 a.e. ornX.

Remark 9. Let A : L2(X, u) — L?(X, n) be a positivity preserving bounded linear oper-
ator. Then the following inequality holds for alle L2(X, u):

[(Au)(x)| < Alu(x)], a.e.on X, (28)

where| - | denotes the absolute value of a complex number. For the prd@Byfsee the
proof of the inequality (X.103) ifi8].

In the sequel, we will use the following proposition.

Proposition 10. Assume that (M, g) is a (not necessarily complete) C*°-Riemannian
manifold without boundary. Assume that M is connected and oriented. Assume that Qg €
L%C(M) is real-valued. Additionally, assume that

((Ap + Qo)u,u) >0, forallu € CZ(M).

Let So be the Friedrichs extension of (Ap + Q0)|cg°(M)- Assume that ) is a positive real
number. Then the operator (So + 1)1 is positivity preserving.

Remark 11. For the proof ofProposition 1Qwhich is based on Kato’s inequality tech-
nigue on Riemannian manifolds, see the proof of Proposition 2 [F3.iRroposition 10s an
extension to Riemannian manifolds of Lemma 2 from Goel[&nFor more on Kato’s in-
equality technique on Riemannian manifolds and its application to essential self-adjointness
of Schibdinger-type operators, sg and references there.
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From Proposition 1Qve obtain the following corollary.

Corollary 12. Assume that (M, g) is a complete C°°-Riemannian manifold without
boundary. Assume that M is connected and oriented. Assume that 0 < q € L|ZOC(M) and
0 <V e CYM). Let Ry and R2 be as in (27). Then the operators Ry and Rz are positivity
preserving.

Proof. Since (M, g) is complete, by Sectior2.4 it follows that S and T are non-
negative essentially self-adjoint operatorsZiA(M). Thus, the Friedrichs extensions of
(Am + q)lcery and Ay + V)lcem) are H and K, respectively. ByProposition 10it
follows thatR1 and R» are positivity preserving operators if(M). O

Proof of Theorem 3. By Lemma 8it follows that
|Vu| < C||Kul, forallu € Dom(K). (29)

Let R, be as in27)and letV : L2(M) — L?(M) denote the maximal multiplication oper-
ator corresponding to the functidn

From(29)it follows that VR, : L?(M) — L?(M) is a bounded linear operator.

Letq : L3(M) — L?(M) denote the maximal multiplication operator corresponding to
the functiory. SinceVR, : L2(M) — L2(M) is a bounded linear operator, (§) it follows
thatgR, : L2(M) — L2(M) is a bounded linear operator.

We will now show thayyR; is a bounded linear operatdi?(M) — L?(M).

First, we will show that

gqR1f < qRa2f forall0< f e L%M). (30)

Here, the inequality is understood in a pointwise sense. (SR¢g)(e D1 ¢ L%(M) and
sinceq € L%C(M), it follows that gR1 f) € L&JC(M) is a function.)

Let0 < f € L%(M) be arbitrary. Since
Rof € Dom(K) = {z € L?’(M) : Lyz € L*(M)},

by Lemma 8we have @y (R2f)) € L?(M) and (VR2f) € L?(M). SinceqRy : LA(M) —
L?(M) is a bounded linear operator, we geR¢ f) € L2(M). ThusR, f € D1, and, hence,

gR2f = qR1(H + 1)R> f. (31)
By the definition ofR, have
gR1f = qR1(K + )R> f. (32)

From(31) and (32)wve have

qR2f —qR1f = qR1((H + 1)R2f — (K + 1)R2f) = qR1((qg — V)R2f). (33)

SinceR; is positivity preserving in.2(M), we haveR, f > 0. SinceVR, andgR> are
bounded linear operatois?(M) — L%(M) and since; — V > 0, we have

0<(q— V)Raof € L3(M). (34)
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SinceR; is positivity preserving ir.2(M), from (34) we get
Ri((g — V)R2f) = 0. (39)
Sinceq > 0, from(33) and (35)we get

gR2f —qR1f =qR1((g — V)R2f) = O,

and(30)is proven.
Let w € L?(M) be arbitrary. SinceR; : L?(M) — L?(M) is a positivity preserving
bounded linear operator, [f¥8) we have the following pointwise inequality:

|Riw| < Ry|w|. (36)
Sinceq > 0, from(36) and (30)we obtain the following pointwise inequality:

lgR1w| = g|R1w| < gR1|w| < qR2|w|. (37)
SincegR» : L3(M) — L%(M) is a bounded linear operator, fro@7) it follows that

lgRiwll < llgRz2lwlll < Callwl, forallw € L¥(M),

whereC3 > 0 is a constant.
HencegR1 is a bounded linear operatdi?(M) — L%(M).
Letu € D1 be arbitrary. Thelgu = qR1(u + Lu), whereLu = A pyu + qu.
SincegR1 : L3(M) — L?(M) is a bounded linear operator, we have

llgull < C1(llull + I Lull), forallu € Da, (38)

whereC; > 0 is a constant.
Using (38) we get

Apull = I1Lu — qull < [ Lull + llqull < C2(llull + |Lull), forallu € Dy,
(39)

whereC, > 0 is a constant.
From(38) and (39)wve obtain(7). This concludes the proof of the Theoreni.]
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