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Abstract

We consider a Schrödinger differential expressionL = �M + q on a complete Riemannian man-
ifold (M,g) with metric g, where�M is the scalar Laplacian onM andq ≥ 0 is a locally square
integrable function onM. In the terminology of Everitt and Giertz, the differential expressionL is
said to be separated inL2(M) if for all u ∈ L2(M) such thatLu ∈ L2(M), we havequ ∈ L2(M). We
give sufficient conditions forL to be separated inL2(M).
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction and the main result

1.1. The setting

Let (M,g) be a Riemannian manifold without boundary (i.e.M is aC∞-manifold without
boundary, (gjk) is a Riemannian metric onM) and dimM = n. We will assume thatM is
connected. We will also assume that we are given a positive smooth measure dµ, i.e. in any
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local coordinatesx1, x2, . . . , xn there exists a strictly positiveC∞-densityρ(x) such that
dµ = ρ(x)dx1dx2, . . . ,dxn.

In the sequel,L2(M) is the space of complex-valued square integrable functions onM
with the inner product:

(u, v) =
∫
M

(uv̄) dµ, (1)

and‖ · ‖ is the norm inL2(M) corresponding to the inner product(1).
We use the notationL2(Λ1T ∗M) for the space of complex-valued square integrable

1-forms onM with the inner product:

(ω,ψ)L2(Λ1T ∗M) =
∫
M

〈ω, ψ̄〉dµ, (2)

where for 1-formsω = ωj dxj andψ = ψk dxk, we define

〈ω,ψ〉 := gjkωjψk,

where (gjk) is the inverse matrix to (gjk), and

ψ̄ = ψ̄k dxk.

(Above we used the standard Einstein summation convention.)
The notation‖ · ‖L2(Λ1T ∗M) stands for the norm inL2(Λ1T ∗M) corresponding to the

inner product(2).
In what follows, byC∞(M) we denote the space of smooth functions onM, byC∞

c (M)—
the space of smooth compactly supported functions onM, byΩ1(M)—the space of smooth
1-forms onM and byΩ1

c (M)—the space of smooth compactly supported 1-forms onM.
In the sequel, the operatord : C∞(M) → Ω1(M) is the standard differential, and

d∗ : Ω1(M) → C∞(M)

is the formal adjoint ofd defined by the identity:

(du, ω)L2(Λ1T ∗M) = (u,d∗ω), u ∈ C∞
c (M), ω ∈ Ω1(M).

By �M := d∗d we will denote the scalar Laplacian onM.
We consider a Schrödinger-type differential expression:

L = �M + q, (3)

whereq ∈ L2
loc(M) is a real-valued function.

1.2. The set D1

Let L be as in(3). In the sequel, we will use the notation:

D1 := {u ∈ L2(M) : Lu ∈ L2(M)}, (4)
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whereLu is understood in the sense of distributions.

Remark 1. In general, it is not true that for allu ∈ D1 we have�Mu ∈ L2(M) andqu ∈
L2(M) separately.

Using the terminology of Everitt and Giertz[4], we will say that the differential expression
L = �M + q is separated inL2(M) when the following statement holds true:

for all u ∈ D1,we havequ ∈ L2(M).

We will give sufficient conditions forL to be separated inL2(M).
First, we make assumptions onq.

Assumption (A1). Assume that there exists a function 0≤ V ∈ C1(M) such that

V (x) ≤ q(x) ≤ cV (x) (5)

and

|dV (x)| ≤ σV 3/2(x), for all x ∈ M, (6)

wherec > 0 and 0≤ σ < 2 are constants.

In (6), the notation|dV (x)| denotes the norm of dV (x) ∈ T ∗
x M with respect to the inner

product inT ∗
x M induced by the metricg.

Remark 2. From(5) it follows that 0≤ q ∈ L∞
loc(M).

We now state the main result.

Theorem 3. Assume that (M,g) is a connected C∞-Riemannian manifold without bound-
ary, with metric g and a positive smooth measure dµ. Additionally, assume that (M,g) is
complete. Assume that q satisfies the Assumption (A1). Then

‖�Mu‖ + ‖qu‖ ≤ C(‖Lu‖ + ‖u‖), for all u ∈ D1, (7)

where C ≥ 0 is a constant (independent of u).

The following corollary is an immediate consequence ofTheorem 3.

Corollary 4. Under the hypotheses of Theorem 3, the differential expression L is separated
in L2(M).

Remark 5. Theorem 3extends a result of Boimatov[1, Theorem 4]concerning the sepa-
ration property for the Schrödinger operator−�+ q in L2(Rn), where� is the standard
Laplacian onRn with standard metric and measure and 0≤ q ∈ C1(Rn). The problem of
separation of differential expressions inL2(Rn) has been studied by many authors; see, for
instance,[1,4] and references therein.
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2. Proof of Theorem 3

2.1. Differential expression LV

Let 0 ≤ V ∈ C1(M). In the sequel, byLV we will denote the differential expression
LV = �M + V .

In the two preliminary lemmas, we will adopt the scheme of Boimatov[1] and Everitt
and Giertz[4] to our context. In the proof ofTheorem 3, we use the positivity preserving
property of resolvents of self-adjoint closures ofLV |C∞

c (M) andL|C∞
c (M).

Lemma 6. Assume that (M,g) is a connectedC∞-Riemannian manifold without boundary,
with metric g and a positive smooth measure dµ. Assume that 0 ≤ V ∈ C1(M) satisfies (6)
with σ ∈ [0,2). Then the following inequalities hold:

‖�Mu‖ + ‖Vu‖ ≤ C̃‖LVu‖, for all u ∈ C∞
c (M), (8)

and

‖V 1/2du‖L2(Λ1T ∗M) ≤ C̃‖LVu‖, for all u ∈ C∞
c (M), (9)

where LV is as in Section2.1and C̃ is a constant depending on n and σ.

Proof. We will first prove that the following equality holds for anyν > 0:

‖LVu‖2 = ‖Vu‖2 + ν‖�Mu‖2 + (1 + ν)Re(Vu,�Mu) + (1 − ν)Re(�Mu,LVu),

for all u ∈ C∞
c (M). (10)

Let ν > 0 be arbitrary. By the definition ofLV , for all u ∈ C∞
c (M) we have

‖LVu‖2 = ‖Vu‖2 + ‖�Mu‖2 + 2Re(�Mu, Vu)

= ‖Vu‖2 + ν‖�Mu‖2 + (1 − ν)‖�Mu‖2 + 2Re(�Mu, Vu)

= ‖Vu‖2 + ν‖�Mu‖2 + (1 − ν)Re(�Mu,LVu− Vu) + 2Re(�Mu, Vu)

= ‖Vu‖2 + ν‖�Mu‖2 + (1 − ν)Re(�Mu,LVu) + (1 + ν)Re(�Mu, Vu),

where (·, ·) is as in(1) and‖ · ‖ is the corresponding norm inL2(M).
Sinceu ∈ C∞

c (M), using integration by parts and the product rule, we have

Re(�Mu, Vu) = Re(d∗du, Vu) = Re(du,d(Vu))L2(Λ1T ∗M)

= Re(du, (dV )u+ V du)L2(Λ1T ∗M)

= Re(du, (dV )u)L2(Λ1T ∗M) + (du, V du)L2(Λ1T ∗M) = (ReZ) +W,

(11)

where

Z =
∫
M

〈du, ū(dV )〉 dµ (12)
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and

W = (V 1/2 du, V 1/2 du)L2(Λ1T ∗M). (13)

From(11)we get

(1 + ν)Re(�Mu, Vu) = (1 + ν)ReZ + (1 + ν)W ≥ −(1+ ν)|Z| + (1 + ν)W. (14)

We will now estimate|Z|, whereZ is as in(12). Using the Cauchy-Schwarz inequality
and the inequality

2ab ≤ ka2 + k−1b2, (15)

wherea, b andk are positive real numbers, we get for anyδ > 0:

|Z| ≤
∫
M

|du||dV ||u| dµ ≤ σ

∫
M

V 3/2|u||du| dµ = σ

∫
M

|V 1/2 du||Vu| dµ

≤ νδ

2
‖V 1/2 du‖2

L2(Λ1T ∗M) + σ2

2νδ
‖Vu‖2. (16)

Here, forξ ∈ T ∗
x M, the notation|ξ| denotes the norm ofξ with respect to the inner product

in T ∗
x M induced by the metricg. In the second inequality in(16), we used(6), and in the

third inequality in(16)we used(15).
Using(15), for anyα > 0 we get

|Re(�Mu,LVu)| ≤ |(�Mu,LVu)| ≤ α

2
‖�Mu‖2 + 1

2α
‖LVu‖2. (17)

Combining(10), (14), (16) and (17)we obtain

‖LVu‖2 ≥ ‖Vu‖2 + ν‖�Mu‖2 − (1 + ν)νδ

2
‖V 1/2 du‖2

L2(Λ1T ∗M)

− (1 + ν)σ2

2νδ
‖Vu‖2 + (1 + ν)‖V 1/2 du‖2

L2(Λ1T ∗M)

− |1 − ν|α
2

‖�Mu‖2 − |1 − ν|
2α

‖LVu‖2. (18)

From(18)we get(
1 + |1 − ν|

2α

)
‖LVu‖2 ≥

(
1 − (1 + ν)σ2

2νδ

)
‖Vu‖2 +

(
ν − |1 − ν|α

2

)
‖�Mu‖2

+
(

(1 + ν) − (1 + ν)νδ

2

)
‖V 1/2 du‖2

L2(Λ1T ∗M). (19)

The inequalities(8) and (9)will immediately follow from(19) if

|1 − ν| < 2ν

α
, νδ < 2, and (1+ ν)σ2 < 2νδ. (20)

Since, by hypothesis, 0≤ σ < 2, there exist numbersν > 0,α > 0 andδ > 0 such that the
inequalities(20)hold.
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This concludes the proof of the lemma.�
In the sequel, we will also use the following terms and notations.

2.2. Minimal operators S and T

Let L be as in(3) and letLV be as in Section2.1. We define the minimal operatorsS
andT in L2(M) associated toL andLV by the formulasSu = Lu andTu = LVu with the
domains Dom(S) = Dom(T ) = C∞

c (M). SinceS andT are symmetric operators, it follows
that S andT is closable; see, for example, Section V.3.3 in[6]. In what follows, we will
denote bỹS andT̃ the closures inL2(M) of the operatorsS andT, respectively.

2.3. Maximal operators H and K

Let L be as in(3). We define the maximal operatorH in L2(M) associated toL by the
formulaHu = S∗u, whereS∗ is the adjoint of the operatorS in L2(M). In the case when
q ∈ L2

loc(M) is real-valued, it is well-known that Dom(H) = D1, whereD1 is as in(4). Let
LV be as in Section2.1. We define the maximal operatorK in L2(M) associated toLV by
the formulaKu = T ∗u, and we have Dom(K) = {u ∈ L2(M) : LVu ∈ L2(M)}.

Remark 7. By Lemma 5.1 from[9] it follows that Dom(K) ⊂ W
2,2
loc (M).

2.4. Essential self-adjointness of S and T

If (M,g) is a complete Riemannian manifold with metricg and positive smooth measure
dµ and if 0≤ q ∈ L2

loc(M), then by Theorem 1.1 in[9] (or by Corollary 2.9 in[2]) the
operatorS is essentially self-adjoint inL2(M). In this case, we havẽS = S∗; see, for
example, Section V.3.3 in[6]. In particular, since 0≤ V ∈ C1(M) ⊂ L2

loc(M), it follows
that the operatorT is essentially self-adjoint inL2(M).

Lemma 8. Assume that (M,g) is a connected C∞-Riemannian manifold without bound-
ary, with metric g and a positive smooth measure dµ. Additionally, assume that (M,g) is
complete. Assume that 0 ≤ V ∈ C1(M) satisfies (6). Then the inequalities (8) and (9) hold
for all u ∈ Dom(K), where K is as in Section2.3.

Proof. Under the hypotheses of this lemma, by Section2.4 it follows thatT is essentially
self-adjoint andK = T ∗ = T̃ . In particular, Dom(̃T ) = Dom(K).

Let u ∈ Dom(K). Then there exists a sequence{uk} in C∞
c (M) such that

uk → u and LVuk → T̃ u in L2(M), ask → ∞.

Since byLemma 6the sequence{uk} satisfies(8) and (9), it follows that the sequences
{Vuk} and{�Muk} are Cauchy sequences inL2(M), and{V 1/2duk} is a Cauchy sequence
in L2(Λ1T ∗M).

We will first show that

Vuk → Vu in L2(M), as k → ∞. (21)



O. Milatovic / Journal of Geometry and Physics 56 (2006) 1283–1293 1289

Since{Vuk} is a Cauchy sequence inL2(M), it follows thatVuk converges tos ∈ L2(M).
Let φ be an arbitrary element ofC∞

c (M). Then

0 = (Vuk, φ) − (uk, Vφ) → (s, φ) − (u, Vφ) = (s− Vu, φ), (22)

where (·, ·) is as in(1).
SinceC∞

c (M) is dense inL2(M), we gets = Vu, and(21) is proven.
If (M,g) is complete, it is well-known that�M is essentially self-adjoint onC∞

c (M),
and we have the following equality:

(�M |C∞
c (M))

∼ = �M,max,

where�M,maxu := �Mu with the domain

Dom(�M,max) = {u ∈ L2(M) : �Mu ∈ L2(M)};

see, for example, Theorem 3.5 in[3].
Sinceuk → u in L2(M) and since{�Muk} is a Cauchy sequence inL2(M), by the

definition of (�M |C∞
c (M))∼ it follows thatu ∈ Dom((�M |C∞

c (M))∼). Since (�M |C∞
c (M))∼ =

�M,maxu, we have

�Muk → �Mu in L2(M), as k → ∞. (23)

Since{�Muk} and{uk} are Cauchy sequences inL2(M) and since

‖duk‖2
L2(Λ1T ∗M) = (duk, duk)L2(Λ1T ∗M) = (�Muk, uk) ≤ ‖�Muk‖‖uk‖,

it follows that {duk} is a Cauchy sequence inL2(Λ1T ∗M), and, hence, duk converges to
some elementω ∈ L2(Λ1T ∗M). Let ψ ∈ Ω1

c (M) be arbitrary. Then, using integration by
parts (see, for example, Lemma 8.8 in[2]) andRemark 7, we get

0 = (duk, ψ)L2(Λ1T ∗M) − (uk,d
∗ψ) → (ω,ψ)L2(Λ1T ∗M) − (u,d∗ψ)

= (ω,ψ)L2(Λ1T ∗M) − (du,ψ)L2(Λ1T ∗M), (24)

where (·, ·) is the inner product inL2(M).
From(24)we get du = ω ∈ L2(Λ1T ∗M), and, hence,

duk → du, in L2(Λ1T ∗M), as k → ∞. (25)

Since{V 1/2 duk} is a Cauchy sequence inL2(Λ1T ∗M), using(25)and the same argument
as in(22), we obtain

V 1/2 duk → V 1/2 du, in L2(Λ1T ∗M), as k → ∞. (26)

Using (21), (23), (26)and taking limits ask → ∞ in all terms in(8) and (9)(with u
replaced byuk), shows that(8) and (9)hold for allu ∈ Dom(T̃ ) = Dom(K). This concludes
the proof of the lemma. �
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2.5. Operators R1 and R2

Let S andT be as in Section2.2and letH andK be as in Section2.3. By Section2.4the
operatorsH = S̃ andK = T̃ are non-negative self-adjoint inL2(M). Thus,

R1 := (H + 1)−1 : L2(M) → L2(M),

R2 := (K + 1)−1 : L2(M) → L2(M) (27)

are bounded linear operators.

2.6. Positivity preserving property

For the following definition, see, for example, the definition below the formulation of
Theorem X.30 in[8].

Let (X,µ) be a measure space. A bounded linear operatorA : L2(X,µ) → L2(X,µ) is
said to bepositivity preserving if for everyu ∈ L2(X,µ) such thatu ≥ 0 a.e. onX, we have
Au ≥ 0 a.e. onX.

Remark 9. LetA : L2(X,µ) → L2(X,µ) be a positivity preserving bounded linear oper-
ator. Then the following inequality holds for allu ∈ L2(X,µ):

|(Au)(x)| ≤ A|u(x)|, a.e. on X, (28)

where| · | denotes the absolute value of a complex number. For the proof of(28), see the
proof of the inequality (X.103) in[8].

In the sequel, we will use the following proposition.

Proposition 10. Assume that (M,g) is a (not necessarily complete) C∞-Riemannian
manifold without boundary. Assume that M is connected and oriented. Assume that Q0 ∈
L2

loc(M) is real-valued. Additionally, assume that

((�M +Q0)u, u) ≥ 0, forall u ∈ C∞
c (M).

Let S0 be the Friedrichs extension of (�M +Q0)|C∞
c (M). Assume that λ is a positive real

number. Then the operator (S0 + λ)−1 is positivity preserving.

Remark 11. For the proof ofProposition 10, which is based on Kato’s inequality tech-
nique on Riemannian manifolds, see the proof of Proposition 2.13 in[7].Proposition 10is an
extension to Riemannian manifolds of Lemma 2 from Goelden[5]. For more on Kato’s in-
equality technique on Riemannian manifolds and its application to essential self-adjointness
of Schr̈odinger-type operators, see[2] and references there.
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FromProposition 10we obtain the following corollary.

Corollary 12. Assume that (M,g) is a complete C∞-Riemannian manifold without
boundary. Assume that M is connected and oriented. Assume that 0 ≤ q ∈ L2

loc(M) and
0 ≤ V ∈ C1(M). Let R1 and R2 be as in (27). Then the operators R1 and R2 are positivity
preserving.

Proof. Since (M,g) is complete, by Section2.4 it follows that S and T are non-
negative essentially self-adjoint operators inL2(M). Thus, the Friedrichs extensions of
(�M + q)|C∞

c (M) and (�M + V )|C∞
c (M) are H and K, respectively. ByProposition 10it

follows thatR1 andR2 are positivity preserving operators inL2(M). �

Proof of Theorem 3. By Lemma 8it follows that

‖Vu‖ ≤ C̃‖Ku‖, for allu ∈ Dom(K). (29)

LetR2 be as in(27)and letV : L2(M) → L2(M) denote the maximal multiplication oper-
ator corresponding to the functionV.

From(29) it follows thatVR2 : L2(M) → L2(M) is a bounded linear operator.
Let q : L2(M) → L2(M) denote the maximal multiplication operator corresponding to

the functionq. SinceVR2 : L2(M) → L2(M) is a bounded linear operator, by(5) it follows
thatqR2 : L2(M) → L2(M) is a bounded linear operator.

We will now show thatqR1 is a bounded linear operator:L2(M) → L2(M).
First, we will show that

qR1f ≤ qR2f, for all 0 ≤ f ∈ L2(M). (30)

Here, the inequality is understood in a pointwise sense. (Since (R1f ) ∈ D1 ⊂ L2(M) and
sinceq ∈ L2

loc(M), it follows that (qR1f ) ∈ L1
loc(M) is a function.)

Let 0 ≤ f ∈ L2(M) be arbitrary. Since

R2f ∈ Dom(K) = {z ∈ L2(M) : LVz ∈ L2(M)},

by Lemma 8we have (�M(R2f )) ∈ L2(M) and (VR2f ) ∈ L2(M). SinceqR2 : L2(M) →
L2(M) is a bounded linear operator, we get (qR2f ) ∈ L2(M). ThusR2f ∈ D1, and, hence,

qR2f = qR1(H + 1)R2f. (31)

By the definition ofR2 have

qR1f = qR1(K + 1)R2f. (32)

From(31) and (32)we have

qR2f − qR1f = qR1((H + 1)R2f − (K + 1)R2f ) = qR1((q− V )R2f ). (33)

SinceR2 is positivity preserving inL2(M), we haveR2f ≥ 0. SinceVR2 andqR2 are
bounded linear operatorsL2(M) → L2(M) and sinceq− V ≥ 0, we have

0 ≤ (q− V )R2f ∈ L2(M). (34)
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SinceR1 is positivity preserving inL2(M), from (34)we get

R1((q− V )R2f ) ≥ 0. (35)

Sinceq ≥ 0, from(33) and (35)we get

qR2f − qR1f = qR1((q− V )R2f ) ≥ 0,

and(30) is proven.
Let w ∈ L2(M) be arbitrary. SinceR1 : L2(M) → L2(M) is a positivity preserving

bounded linear operator, by(28)we have the following pointwise inequality:

|R1w| ≤ R1|w|. (36)

Sinceq ≥ 0, from(36) and (30)we obtain the following pointwise inequality:

|qR1w| = q|R1w| ≤ qR1|w| ≤ qR2|w|. (37)

SinceqR2 : L2(M) → L2(M) is a bounded linear operator, from(37) it follows that

‖qR1w‖ ≤ ‖qR2|w|‖ ≤ C3‖w‖, for all w ∈ L2(M),

whereC3 ≥ 0 is a constant.
Hence,qR1 is a bounded linear operator:L2(M) → L2(M).
Let u ∈ D1 be arbitrary. Thenqu = qR1(u+ Lu), whereLu = �Mu+ qu.
SinceqR1 : L2(M) → L2(M) is a bounded linear operator, we have

‖qu‖ ≤ C1(‖u‖ + ‖Lu‖), for all u ∈ D1, (38)

whereC1 ≥ 0 is a constant.
Using(38)we get

‖�Mu‖ = ‖Lu− qu‖ ≤ ‖Lu‖ + ‖qu‖ ≤ C2(‖u‖ + ‖Lu‖), for all u ∈ D1,

(39)

whereC2 ≥ 0 is a constant.
From(38) and (39)we obtain(7). This concludes the proof of the Theorem.�
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