

Available online at www.sciencedirect.com

JOURNAL OF GEOMETRY AND PHYSICS

Journal of Geometry and Physics 56 (2006) 1283-1293

www.elsevier.com/locate/jgp

Separation property for Schrödinger operators on Riemannian manifolds

Ognjen Milatovic*

Department of Mathematics and Statistics, University of North Florida, Jacksonville, FL 32224, USA

Received 3 June 2005; received in revised form 3 June 2005; accepted 8 July 2005 Available online 10 August 2005

Abstract

We consider a Schrödinger differential expression $L = \Delta_M + q$ on a complete Riemannian manifold (M, g) with metric g, where Δ_M is the scalar Laplacian on M and $q \ge 0$ is a locally square integrable function on M. In the terminology of Everitt and Giertz, the differential expression L is said to be separated in $L^2(M)$ if for all $u \in L^2(M)$ such that $Lu \in L^2(M)$, we have $qu \in L^2(M)$. We give sufficient conditions for L to be separated in $L^2(M)$. © 2005 Elsevier B.V. All rights reserved.

MSC: 58J50

Keywords: Riemannian manifold; Schrödinger operator; Separation

1. Introduction and the main result

1.1. The setting

Let (M, g) be a Riemannian manifold without boundary (i.e. M is a C^{∞} -manifold without boundary, (g_{jk}) is a Riemannian metric on M) and dim M = n. We will assume that M is connected. We will also assume that we are given a positive smooth measure $d\mu$, i.e. in any

* Tel.: +1 904 620 1745.

E-mail address: omilatov@unf.edu.

0393-0440 = see front matter © 2005 Elsevier B.V. All rights reserved. doi:10.1016/j.geomphys.2005.07.001

local coordinates $x^1, x^2, ..., x^n$ there exists a strictly positive C^{∞} -density $\rho(x)$ such that $d\mu = \rho(x)dx^1dx^2, ..., dx^n$.

In the sequel, $L^2(M)$ is the space of complex-valued square integrable functions on M with the inner product:

$$(u,v) = \int_{M} (u\bar{v}) \,\mathrm{d}\mu,\tag{1}$$

and $\|\cdot\|$ is the norm in $L^2(M)$ corresponding to the inner product (1).

We use the notation $L^2(\Lambda^1 T^*M)$ for the space of complex-valued square integrable 1-forms on *M* with the inner product:

$$(\omega,\psi)_{L^2(\Lambda^1T^*M)} = \int_M \langle \omega,\bar{\psi}\rangle \mathrm{d}\mu,\tag{2}$$

where for 1-forms $\omega = \omega_j dx^j$ and $\psi = \psi_k dx^k$, we define

$$\langle \omega, \psi \rangle := g^{jk} \omega_j \psi_k,$$

where (g^{jk}) is the inverse matrix to (g_{jk}) , and

$$\bar{\psi} = \bar{\psi}_k \,\mathrm{d}x^k$$

(Above we used the standard Einstein summation convention.)

The notation $\|\cdot\|_{L^2(\Lambda^1T^*M)}$ stands for the norm in $L^2(\Lambda^1T^*M)$ corresponding to the inner product (2).

In what follows, by $C^{\infty}(M)$ we denote the space of smooth functions on M, by $C_c^{\infty}(M)$ the space of smooth compactly supported functions on M, by $\Omega^1(M)$ —the space of smooth 1-forms on M and by $\Omega_c^1(M)$ —the space of smooth compactly supported 1-forms on M.

In the sequel, the operator $d: C^{\infty}(M) \to \Omega^1(M)$ is the standard differential, and

$$d^*: \Omega^1(M) \to C^\infty(M)$$

is the formal adjoint of *d* defined by the identity:

$$(\mathrm{d} u, \omega)_{L^2(\Lambda^1 T^* M)} = (u, \mathrm{d}^* \omega), \qquad u \in C^\infty_c(M), \qquad \omega \in \Omega^1(M).$$

By $\Delta_M := d^*d$ we will denote the scalar Laplacian on *M*.

We consider a Schrödinger-type differential expression:

$$L = \Delta_M + q, \tag{3}$$

where $q \in L^2_{loc}(M)$ is a real-valued function.

1.2. The set
$$D_1$$

Let L be as in (3). In the sequel, we will use the notation:

$$D_1 := \{ u \in L^2(M) : Lu \in L^2(M) \},$$
(4)

where Lu is understood in the sense of distributions.

Remark 1. In general, it is not true that for all $u \in D_1$ we have $\Delta_M u \in L^2(M)$ and $qu \in L^2(M)$ separately.

Using the terminology of Everitt and Giertz [4], we will say that the differential expression $L = \Delta_M + q$ is separated in $L^2(M)$ when the following statement holds true:

for all $u \in D_1$, we have $qu \in L^2(M)$.

We will give sufficient conditions for *L* to be separated in $L^2(M)$.

First, we make assumptions on *q*.

Assumption (A1). Assume that there exists a function $0 \le V \in C^1(M)$ such that

$$V(x) \le q(x) \le cV(x) \tag{5}$$

and

$$|dV(x)| \le \sigma V^{3/2}(x), \quad \text{for all } x \in M, \tag{6}$$

where c > 0 and $0 \le \sigma < 2$ are constants.

In (6), the notation |dV(x)| denotes the norm of $dV(x) \in T_x^*M$ with respect to the inner product in T_x^*M induced by the metric g.

Remark 2. From (5) it follows that $0 \le q \in L^{\infty}_{loc}(M)$.

We now state the main result.

Theorem 3. Assume that (M, g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and a positive smooth measure $d\mu$. Additionally, assume that (M, g) is complete. Assume that q satisfies the Assumption (A1). Then

 $\|\Delta_M u\| + \|qu\| \le C(\|Lu\| + \|u\|), \quad \text{for all } u \in D_1, \tag{7}$

where $C \ge 0$ is a constant (independent of u).

The following corollary is an immediate consequence of Theorem 3.

Corollary 4. Under the hypotheses of Theorem 3, the differential expression L is separated in $L^2(M)$.

Remark 5. Theorem 3 extends a result of Boimatov [1, Theorem 4]concerning the separation property for the Schrödinger operator $-\Delta + q$ in $L^2(\mathbb{R}^n)$, where Δ is the standard Laplacian on \mathbb{R}^n with standard metric and measure and $0 \le q \in C^1(\mathbb{R}^n)$. The problem of separation of differential expressions in $L^2(\mathbb{R}^n)$ has been studied by many authors; see, for instance, [1,4] and references therein.

2. Proof of Theorem 3

2.1. Differential expression L_V

Let $0 \le V \in C^1(M)$. In the sequel, by L_V we will denote the differential expression $L_V = \Delta_M + V$.

In the two preliminary lemmas, we will adopt the scheme of Boimatov [1] and Everitt and Giertz [4] to our context. In the proof of Theorem 3, we use the positivity preserving property of resolvents of self-adjoint closures of $L_V|_{C_c^{\infty}(M)}$ and $L|_{C_c^{\infty}(M)}$.

Lemma 6. Assume that (M, g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and a positive smooth measure $d\mu$. Assume that $0 \le V \in C^1(M)$ satisfies (6) with $\sigma \in [0, 2)$. Then the following inequalities hold:

$$\|\Delta_M u\| + \|Vu\| \le C \|L_V u\|, \qquad \text{for all } u \in C_c^\infty(M), \tag{8}$$

and

$$\|V^{1/2} du\|_{L^{2}(\Lambda^{1}T^{*}M)} \leq \tilde{C}\|L_{V}u\|, \qquad for all \ u \in C_{c}^{\infty}(M),$$
(9)

where L_V is as in Section 2.1 and \tilde{C} is a constant depending on n and σ .

Proof. We will first prove that the following equality holds for any v > 0:

$$\|L_{V}u\|^{2} = \|Vu\|^{2} + \nu \|\Delta_{M}u\|^{2} + (1+\nu)\operatorname{Re}(Vu, \Delta_{M}u) + (1-\nu)\operatorname{Re}(\Delta_{M}u, L_{V}u),$$

for all $u \in C_{c}^{\infty}(M)$. (10)

Let $\nu > 0$ be arbitrary. By the definition of L_V , for all $u \in C_c^{\infty}(M)$ we have

$$\begin{split} \|L_{V}u\|^{2} &= \|Vu\|^{2} + \|\Delta_{M}u\|^{2} + 2\operatorname{Re}(\Delta_{M}u, Vu) \\ &= \|Vu\|^{2} + \nu\|\Delta_{M}u\|^{2} + (1-\nu)\|\Delta_{M}u\|^{2} + 2\operatorname{Re}(\Delta_{M}u, Vu) \\ &= \|Vu\|^{2} + \nu\|\Delta_{M}u\|^{2} + (1-\nu)\operatorname{Re}(\Delta_{M}u, L_{V}u - Vu) + 2\operatorname{Re}(\Delta_{M}u, Vu) \\ &= \|Vu\|^{2} + \nu\|\Delta_{M}u\|^{2} + (1-\nu)\operatorname{Re}(\Delta_{M}u, L_{V}u) + (1+\nu)\operatorname{Re}(\Delta_{M}u, Vu), \end{split}$$

where (\cdot, \cdot) is as in (1) and $\|\cdot\|$ is the corresponding norm in $L^2(M)$.

Since $u \in C_c^{\infty}(M)$, using integration by parts and the product rule, we have

$$Re(\Delta_{M}u, Vu) = Re(d^{*}du, Vu) = Re(du, d(Vu))_{L^{2}(\Lambda^{1}T^{*}M)}$$

= Re(du, (dV)u + V du)_{L^{2}(\Lambda^{1}T^{*}M)}
= Re(du, (dV)u)_{L^{2}(\Lambda^{1}T^{*}M)} + (du, V du)_{L^{2}(\Lambda^{1}T^{*}M)} = (ReZ) + W,
(11)

where

$$Z = \int_{M} \langle \mathrm{d}u, \bar{u}(\mathrm{d}V) \rangle \,\mathrm{d}\mu \tag{12}$$

and

$$W = (V^{1/2} du, V^{1/2} du)_{L^2(\Lambda^1 T^* M)}.$$
(13)

From (11) we get

$$(1+\nu)\operatorname{Re}(\Delta_M u, Vu) = (1+\nu)\operatorname{Re}Z + (1+\nu)W \ge -(1+\nu)|Z| + (1+\nu)W.$$
(14)

We will now estimate |Z|, where Z is as in (12). Using the Cauchy-Schwarz inequality and the inequality

$$2ab \le ka^2 + k^{-1}b^2, (15)$$

where *a*, *b* and *k* are positive real numbers, we get for any $\delta > 0$:

$$|Z| \leq \int_{M} |du| |dV| |u| d\mu \leq \sigma \int_{M} V^{3/2} |u| |du| d\mu = \sigma \int_{M} |V^{1/2} du| |Vu| d\mu$$
$$\leq \frac{\nu \delta}{2} \|V^{1/2} du\|_{L^{2}(\Lambda^{1}T^{*}M)}^{2} + \frac{\sigma^{2}}{2\nu \delta} \|Vu\|^{2}.$$
(16)

Here, for $\xi \in T_x^* M$, the notation $|\xi|$ denotes the norm of ξ with respect to the inner product in $T_x^* M$ induced by the metric g. In the second inequality in (16), we used (6), and in the third inequality in (16) we used (15).

Using (15), for any $\alpha > 0$ we get

$$|\operatorname{Re}(\Delta_{M}u, L_{V}u)| \le |(\Delta_{M}u, L_{V}u)| \le \frac{\alpha}{2} \|\Delta_{M}u\|^{2} + \frac{1}{2\alpha} \|L_{V}u\|^{2}.$$
(17)

Combining (10), (14), (16) and (17) we obtain

$$\|L_{V}u\|^{2} \geq \|Vu\|^{2} + \nu \|\Delta_{M}u\|^{2} - \frac{(1+\nu)\nu\delta}{2} \|V^{1/2} du\|_{L^{2}(\Lambda^{1}T^{*}M)}^{2}$$
$$- \frac{(1+\nu)\sigma^{2}}{2\nu\delta} \|Vu\|^{2} + (1+\nu) \|V^{1/2} du\|_{L^{2}(\Lambda^{1}T^{*}M)}^{2}$$
$$- \frac{|1-\nu|\alpha}{2} \|\Delta_{M}u\|^{2} - \frac{|1-\nu|}{2\alpha} \|L_{V}u\|^{2}.$$
(18)

From (18) we get

$$\left(1 + \frac{|1 - \nu|}{2\alpha}\right) \|L_{\nu}u\|^{2} \ge \left(1 - \frac{(1 + \nu)\sigma^{2}}{2\nu\delta}\right) \|Vu\|^{2} + \left(\nu - \frac{|1 - \nu|\alpha}{2}\right) \|\Delta_{M}u\|^{2} + \left((1 + \nu) - \frac{(1 + \nu)\nu\delta}{2}\right) \|V^{1/2} du\|^{2}_{L^{2}(\Lambda^{1}T^{*}M)}.$$
 (19)

The inequalities (8) and (9) will immediately follow from (19) if

$$|1-\nu| < \frac{2\nu}{\alpha}, \qquad \nu\delta < 2, \quad \text{and} \quad (1+\nu)\sigma^2 < 2\nu\delta.$$
 (20)

Since, by hypothesis, $0 \le \sigma < 2$, there exist numbers $\nu > 0$, $\alpha > 0$ and $\delta > 0$ such that the inequalities (20) hold.

This concludes the proof of the lemma. \Box

In the sequel, we will also use the following terms and notations.

2.2. Minimal operators S and T

Let *L* be as in (3) and let L_V be as in Section 2.1. We define the minimal operators *S* and *T* in $L^2(M)$ associated to *L* and L_V by the formulas Su = Lu and $Tu = L_V u$ with the domains $Dom(S) = Dom(T) = C_c^{\infty}(M)$. Since *S* and *T* are symmetric operators, it follows that *S* and *T* is closable; see, for example, Section V.3.3 in [6]. In what follows, we will denote by \tilde{S} and \tilde{T} the closures in $L^2(M)$ of the operators *S* and *T*, respectively.

2.3. Maximal operators H and K

Let *L* be as in (3). We define the maximal operator *H* in $L^2(M)$ associated to *L* by the formula $Hu = S^*u$, where S^* is the adjoint of the operator *S* in $L^2(M)$. In the case when $q \in L^2_{loc}(M)$ is real-valued, it is well-known that $Dom(H) = D_1$, where D_1 is as in (4). Let L_V be as in Section 2.1. We define the maximal operator *K* in $L^2(M)$ associated to L_V by the formula $Ku = T^*u$, and we have $Dom(K) = \{u \in L^2(M) : L_Vu \in L^2(M)\}$.

Remark 7. By Lemma 5.1 from [9] it follows that $Dom(K) \subset W^{2,2}_{loc}(M)$.

2.4. Essential self-adjointness of S and T

If (M, g) is a complete Riemannian manifold with metric g and positive smooth measure $d\mu$ and if $0 \le q \in L^2_{loc}(M)$, then by Theorem 1.1 in [9] (or by Corollary 2.9 in [2]) the operator S is essentially self-adjoint in $L^2(M)$. In this case, we have $\tilde{S} = S^*$; see, for example, Section V.3.3 in [6]. In particular, since $0 \le V \in C^1(M) \subset L^2_{loc}(M)$, it follows that the operator T is essentially self-adjoint in $L^2(M)$.

Lemma 8. Assume that (M, g) is a connected C^{∞} -Riemannian manifold without boundary, with metric g and a positive smooth measure $d\mu$. Additionally, assume that (M, g) is complete. Assume that $0 \le V \in C^1(M)$ satisfies (6). Then the inequalities (8) and (9) hold for all $u \in Dom(K)$, where K is as in Section 2.3.

Proof. Under the hypotheses of this lemma, by Section 2.4 it follows that *T* is essentially self-adjoint and $K = T^* = \tilde{T}$. In particular, $Dom(\tilde{T}) = Dom(K)$.

Let $u \in \text{Dom}(K)$. Then there exists a sequence $\{u_k\}$ in $C_c^{\infty}(M)$ such that

 $u_k \to u$ and $L_V u_k \to \tilde{T}u$ in $L^2(M)$, as $k \to \infty$.

Since by Lemma 6 the sequence $\{u_k\}$ satisfies (8) and (9), it follows that the sequences $\{Vu_k\}$ and $\{\Delta_M u_k\}$ are Cauchy sequences in $L^2(M)$, and $\{V^{1/2}du_k\}$ is a Cauchy sequence in $L^2(\Lambda^1 T^*M)$.

We will first show that

$$Vu_k \to Vu$$
 in $L^2(M)$, as $k \to \infty$. (21)

Since $\{Vu_k\}$ is a Cauchy sequence in $L^2(M)$, it follows that Vu_k converges to $s \in L^2(M)$. Let ϕ be an arbitrary element of $C_c^{\infty}(M)$. Then

$$0 = (Vu_k, \phi) - (u_k, V\phi) \rightarrow (s, \phi) - (u, V\phi) = (s - Vu, \phi),$$

$$(22)$$

where (\cdot, \cdot) is as in (1).

Since $C_c^{\infty}(M)$ is dense in $L^2(M)$, we get s = Vu, and (21) is proven.

If (M, g) is complete, it is well-known that Δ_M is essentially self-adjoint on $C_c^{\infty}(M)$, and we have the following equality:

$$\left(\Delta_M|_{C^{\infty}_c(M)}\right)^{\sim} = \Delta_{M,\max},$$

where $\Delta_{M,\max} u := \Delta_M u$ with the domain

$$Dom(\Delta_{M,max}) = \{ u \in L^2(M) : \Delta_M u \in L^2(M) \};$$

see, for example, Theorem 3.5 in [3].

Since $u_k \to u$ in $L^2(M)$ and since $\{\Delta_M u_k\}$ is a Cauchy sequence in $L^2(M)$, by the definition of $(\Delta_M|_{C_c^{\infty}(M)})^{\sim}$ it follows that $u \in \text{Dom}((\Delta_M|_{C_c^{\infty}(M)})^{\sim})$. Since $(\Delta_M|_{C_c^{\infty}(M)})^{\sim} = \Delta_{M,\max} u$, we have

$$\Delta_M u_k \to \Delta_M u$$
 in $L^2(M)$, as $k \to \infty$. (23)

Since $\{\Delta_M u_k\}$ and $\{u_k\}$ are Cauchy sequences in $L^2(M)$ and since

$$\|\mathrm{d} u_k\|_{L^2(\Lambda^1 T^* M)}^2 = (\mathrm{d} u_k, \, \mathrm{d} u_k)_{L^2(\Lambda^1 T^* M)} = (\Delta_M u_k, u_k) \le \|\Delta_M u_k\| \|u_k\|,$$

it follows that $\{du_k\}$ is a Cauchy sequence in $L^2(\Lambda^1 T^*M)$, and, hence, du_k converges to some element $\omega \in L^2(\Lambda^1 T^*M)$. Let $\psi \in \Omega_c^1(M)$ be arbitrary. Then, using integration by parts (see, for example, Lemma 8.8 in [2]) and Remark 7, we get

$$0 = (du_k, \psi)_{L^2(\Lambda^1 T^* M)} - (u_k, d^* \psi) \to (\omega, \psi)_{L^2(\Lambda^1 T^* M)} - (u, d^* \psi)$$

= $(\omega, \psi)_{L^2(\Lambda^1 T^* M)} - (du, \psi)_{L^2(\Lambda^1 T^* M)},$ (24)

where (\cdot, \cdot) is the inner product in $L^2(M)$.

From (24) we get $du = \omega \in L^2(\Lambda^1 T^* M)$, and, hence,

$$du_k \to du$$
, in $L^2(\Lambda^1 T^*M)$, as $k \to \infty$. (25)

Since $\{V^{1/2} du_k\}$ is a Cauchy sequence in $L^2(\Lambda^1 T^*M)$, using (25) and the same argument as in (22), we obtain

$$V^{1/2} \operatorname{d} u_k \to V^{1/2} \operatorname{d} u$$
, in $L^2(\Lambda^1 T^* M)$, as $k \to \infty$. (26)

Using (21), (23), (26) and taking limits as $k \to \infty$ in all terms in (8) and (9) (with *u* replaced by u_k), shows that (8) and (9) hold for all $u \in \text{Dom}(\tilde{T}) = \text{Dom}(K)$. This concludes the proof of the lemma. \Box

2.5. Operators R_1 and R_2

Let *S* and *T* be as in Section 2.2 and let *H* and *K* be as in Section 2.3. By Section 2.4 the operators $H = \tilde{S}$ and $K = \tilde{T}$ are non-negative self-adjoint in $L^2(M)$. Thus,

$$R_1 := (H+1)^{-1} : L^2(M) \to L^2(M),$$

$$R_2 := (K+1)^{-1} : L^2(M) \to L^2(M)$$
(27)

are bounded linear operators.

2.6. Positivity preserving property

For the following definition, see, for example, the definition below the formulation of Theorem X.30 in [8].

Let (X, μ) be a measure space. A bounded linear operator $A : L^2(X, \mu) \to L^2(X, \mu)$ is said to be *positivity preserving* if for every $u \in L^2(X, \mu)$ such that $u \ge 0$ a.e. on X, we have $Au \ge 0$ a.e. on X.

Remark 9. Let $A : L^2(X, \mu) \to L^2(X, \mu)$ be a positivity preserving bounded linear operator. Then the following inequality holds for all $u \in L^2(X, \mu)$:

$$|(Au)(x)| \le A|u(x)|, \quad \text{a.e. on} \quad X,$$
(28)

where $|\cdot|$ denotes the absolute value of a complex number. For the proof of (28), see the proof of the inequality (X.103) in [8].

In the sequel, we will use the following proposition.

Proposition 10. Assume that (M, g) is a (not necessarily complete) C^{∞} -Riemannian manifold without boundary. Assume that M is connected and oriented. Assume that $Q_0 \in L^2_{loc}(M)$ is real-valued. Additionally, assume that

 $((\Delta_M + Q_0)u, u) \ge 0, \quad for all \ u \in C_c^{\infty}(M).$

Let S_0 be the Friedrichs extension of $(\Delta_M + Q_0)|_{C_c^{\infty}(M)}$. Assume that λ is a positive real number. Then the operator $(S_0 + \lambda)^{-1}$ is positivity preserving.

Remark 11. For the proof of Proposition 10, which is based on Kato's inequality technique on Riemannian manifolds, see the proof of Proposition 2.13 in [7]. Proposition 10 is an extension to Riemannian manifolds of Lemma 2 from Goelden [5]. For more on Kato's inequality technique on Riemannian manifolds and its application to essential self-adjointness of Schrödinger-type operators, see [2] and references there.

From Proposition 10 we obtain the following corollary.

Corollary 12. Assume that (M, g) is a complete C^{∞} -Riemannian manifold without boundary. Assume that M is connected and oriented. Assume that $0 \le q \in L^2_{loc}(M)$ and $0 \le V \in C^1(M)$. Let R_1 and R_2 be as in (27). Then the operators R_1 and R_2 are positivity preserving.

Proof. Since (M, g) is complete, by Section 2.4 it follows that *S* and *T* are nonnegative essentially self-adjoint operators in $L^2(M)$. Thus, the Friedrichs extensions of $(\Delta_M + q)|_{C_c^{\infty}(M)}$ and $(\Delta_M + V)|_{C_c^{\infty}(M)}$ are *H* and *K*, respectively. By Proposition 10 it follows that R_1 and R_2 are positivity preserving operators in $L^2(M)$. \Box

Proof of Theorem 3. By Lemma 8 it follows that

$$\|Vu\| \le C \|Ku\|, \quad \text{for all } u \in \text{Dom}(K).$$
⁽²⁹⁾

Let R_2 be as in (27) and let $V : L^2(M) \to L^2(M)$ denote the maximal multiplication operator corresponding to the function *V*.

From (29) it follows that $VR_2 : L^2(M) \to L^2(M)$ is a bounded linear operator.

Let $q: L^2(M) \to L^2(M)$ denote the maximal multiplication operator corresponding to the function q. Since $VR_2: L^2(M) \to L^2(M)$ is a bounded linear operator, by (5) it follows that $qR_2: L^2(M) \to L^2(M)$ is a bounded linear operator.

We will now show that qR_1 is a bounded linear operator: $L^2(M) \rightarrow L^2(M)$. First, we will show that

$$qR_1 f \le qR_2 f, \quad \text{for all } 0 \le f \in L^2(M).$$
(30)

Here, the inequality is understood in a pointwise sense. (Since $(R_1 f) \in D_1 \subset L^2(M)$ and since $q \in L^2_{loc}(M)$, it follows that $(qR_1 f) \in L^1_{loc}(M)$ is a function.)

Let $0 \le f \in L^2(M)$ be arbitrary. Since

$$R_2 f \in \text{Dom}(K) = \{ z \in L^2(M) : L_V z \in L^2(M) \},\$$

by Lemma 8 we have $(\Delta_M(R_2 f)) \in L^2(M)$ and $(VR_2 f) \in L^2(M)$. Since $qR_2 : L^2(M) \to L^2(M)$ is a bounded linear operator, we get $(qR_2 f) \in L^2(M)$. Thus $R_2 f \in D_1$, and, hence,

$$qR_2f = qR_1(H+1)R_2f.$$
(31)

By the definition of R_2 have

$$qR_1f = qR_1(K+1)R_2f.$$
(32)

From (31) and (32) we have

$$qR_2f - qR_1f = qR_1((H+1)R_2f - (K+1)R_2f) = qR_1((q-V)R_2f).$$
 (33)

Since R_2 is positivity preserving in $L^2(M)$, we have $R_2 f \ge 0$. Since VR_2 and qR_2 are bounded linear operators $L^2(M) \rightarrow L^2(M)$ and since $q - V \ge 0$, we have

$$0 \le (q - V)R_2 f \in L^2(M).$$
(34)

Since R_1 is positivity preserving in $L^2(M)$, from (34) we get

$$R_1((q-V)R_2f) \ge 0. \tag{35}$$

Since $q \ge 0$, from (33) and (35) we get

$$qR_2f - qR_1f = qR_1((q - V)R_2f) \ge 0,$$

and (30) is proven.

Let $w \in L^2(M)$ be arbitrary. Since $R_1 : L^2(M) \to L^2(M)$ is a positivity preserving bounded linear operator, by (28) we have the following pointwise inequality:

$$|R_1w| \le R_1|w|. \tag{36}$$

Since $q \ge 0$, from (36) and (30) we obtain the following pointwise inequality:

$$|qR_1w| = q|R_1w| \le qR_1|w| \le qR_2|w|.$$
(37)

Since $qR_2 : L^2(M) \to L^2(M)$ is a bounded linear operator, from (37) it follows that

 $||qR_1w|| \le ||qR_2|w||| \le C_3||w||, \text{ for all } w \in L^2(M),$

where $C_3 \ge 0$ is a constant.

Hence, qR_1 is a bounded linear operator: $L^2(M) \to L^2(M)$. Let $u \in D_1$ be arbitrary. Then $qu = qR_1(u + Lu)$, where $Lu = \Delta_M u + qu$. Since $qR_1 : L^2(M) \to L^2(M)$ is a bounded linear operator, we have

$$||qu|| \le C_1(||u|| + ||Lu||), \quad \text{for all } u \in D_1,$$
(38)

where $C_1 \ge 0$ is a constant.

Using (38) we get

$$\|\Delta_M u\| = \|Lu - qu\| \le \|Lu\| + \|qu\| \le C_2(\|u\| + \|Lu\|), \text{ for all } u \in D_1,$$

(39)

where $C_2 \ge 0$ is a constant.

From (38) and (39) we obtain (7). This concludes the proof of the Theorem. \Box

References

- K.Kh. Boimatov, Coercive estimates and separation for second order elliptic differential equations, Sov. Math. Dokl. 38 (1) (1989) 157–160.
- [2] M. Braverman, O. Milatovic, M. Shubin, Essential self-adjointness of Schrödinger type operators on manifolds, Russ. Math. Surv. 57 (4) (2002) 641–692.
- [3] J. Eichhorn, Elliptic differential operators on noncompact manifolds, in: Proceedings of the Seminar Analysis of the Karl-Weierstrass-Institute of Mathematics, Teubner, Leipzig, Berlin, 1986/87, Teubner-Texte Math. 106, 1988, 4–169.
- [4] W.N. Everitt, M. Giertz, Inequalities and separation for Schrödinger type operators in L²(Rⁿ), Proc. Royal Soc. Edinb. 79A (1977) 257–265.

- [5] H.-W. Goelden, On non-degeneracy of the ground state of Schrödinger operators, Math. Z. 155 (1977) 239–247.
- [6] T. Kato, Perturbation Theory for Linear Operators, Springer-Verlag, New York, 1980.
- [7] O. Milatovic, The form sum and the Friedrichs extension of Schrödinger-type operators on Riemannian manifolds, Proc. Am. Math. Soc. 132 (1) (2004) 147–156.
- [8] M. Reed, B. Simon, Methods of Modern Mathematical Physics I, II: Functional Analysis. Fourier Analysis, Self-adjointness, Academic Press, New York, 1975.
- M.A. Shubin, Essential self-adjointness for semibounded magnetic Schrödinger operators on non-compact manifolds, J. Funct. Anal. 186 (2001) 92–116.